Scheduler-based Defenses against
Cross-VM Side-channels

Venkat(anathan) Varadarajan,

Thomas Ristenpart,
/t A
AP and Michael Swift

\\l/

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON
EPARTMENT OF COMPUTER SCIENCES

Shared Resources and Isolation

laaS Public clouds (Amazon EC2, Azure, etc.)

— Multi-tenancy s
VMs share many resources §

— CPU, cache, memory, disk, network, etc.

Virtual Machine Managers (VMM)
— Goal: Provide Isolation

Deployed VMMs don’t perfectly isolate VMs

— Side-channels [Ristenpart et al. ’09, Zhang et al. "12]

— Other attacks: Performance Degradation,
RFA [Varadarajan et al. ‘12]

VM

VM

Example Cache Side-channel*

Modular Exponentiation Algorithm:

SQUAREMULT(X, €, N):
Control-flow Lete,, ..., €, be the bits of e ~ Secret
. y «— 1
Side-channel for i=ndownto 1 do
_ : y <— SQUARE(y)
secret key bits ¥ < MODREDUCE(y, N)
directly affect if e, = 1 then Erocutes
Instruction y <= MULT(y, x) only when secret
sequence executed y <~ MODREDUCE(y. N) key bit is 1
end if
end for
I-cache usage leaks secret return y

— Operations: Square (S), Reduce (R), and Multiply (M).
— e,=1bit: SORO>MDR
— e,=0bit: S>R (and, NOT followed by M—>R).

* Zhang, Juels, Reiter and Ristenpart: Cross-VM Side-channel Attack, CCS 2012

R
Translation
&
logical
isolation
layer
N J

Cache-based Side-channels

cache sets

Prime Probe

Core: [VMIVMIVMIVMJ
Ty T

Preemption Relinquish

cache ways —>

> Time

Attacker Timing
Profile

{

Extract secret
information

Defenses against Side-channels

Access-driven side-channel attacks rely on:

1. Sharing
1.1. Resource Partitioning or Hard isolation
Problems: low utilization, high service cost
1.2. Specialized Hardware
Problems: high cost, non-commodity
2. Access to high-resolution timers
— Reduce resolution, add noise
— Problems: Loss of feature or high overhead
3. Vulnerabilities in CPU scheduler
— Managing preemptions — soft isolation

Scheduler is exploited in side-channels =
NO prior research on secure scheduler designs!

Soft Isolation Mechanisms

Goals:

1. Reduce risk of sharing

2. Monotonically improve security
3. Low performance overhead

Challenges:
— Unintuitive impacts of scheduler changes
— No standard benchmarks
— No security evaluation methods

Prime-Probe Side-channel Attack

Core: [VM f:llrl\rlllel VM IP:::e}
] 7

<>

—>
Time

Preemption interval

Shorter the
preemption interval
9
more (or any)

information leakage
bandwidth

cache sets

< cache ways —> 7

Background: Xen CPU Scheduler

Throughput-
oriented:

Benefits from longer
scheduler timeslices

Prime-probe attacker:
Abuses BOOST
priority, using
interrupts (IPIs).

Interactive
\VA\Y

State-of-art
CPU schedulers

Latency-oriented:
Benefits from quick
wakeups,

BOOST priority

Soft-lsolation:
Minimum Runtime Guarantee

Under Zhang et al. attack setting:

Core: VM | VM VM
1 1

IPI «—>
(boosted) < 10us

> Time

Under Minimum RunTime (MRT) guarantee: ,
Introduced in Xen and
Linux for performance
Core: VM VM improvement for batch
T l T > Time VMs
|PI :
What about security
(boosted) - — roperties?
Min. runtime prop ‘

(scheduler parameter) 9

Evaluation of MRT

. Does MRT make existing side-channels
harder?

. What is the scope of security against side-
channels for all victims?

. How much performance overhead for
latency-sensitive applications with MRT?

Experiment Setting

Machine Configuration:

Intel Xeon E5645, 2.4GHz, 6 cores, single
package

Memory Hierarchy Private 32KB L1 (I- and D-Cache), 256KB unified
L2, 12MB shared L3 & 16GB DDR3 RAM.

Xen Configuration:

Scheduler Credit Scheduler 1
Configuration 40% cap on DomU VCPUs
(Non-work conserving) with equal weight
VMs 6
VCPUs per VM 2

Similar to setting used by Zhang et al.

L1 I-Cache

Prime-Probe Timing Profile

A Sample Side-channel Victim

Victim Pseudo Code

if subset(secret)= X
then
for(sometime)
do
instr. in green
endfor
fi
if subset(secret)= Y
then
for(sometime)
do
instr. in
endfor
fi

Cache sets

For simplicity:
secret = XYXY..

Sample probe (time series)

10000

9800

9600

9400

9200

9000

Prime-Probe Timing Profile

0 20 40 60 80

|-cache set number

20 40 60 80 100 120

|-cache set number

Idle Victim VM

Model Victim VM Under
Zero-MRT

Cache Timing per iCache set probe

(0 to 200 cycle range)

13

10000

9800

9600

9400

9200

Sample probe (time series)

9000

A simple scheduler mechanism - known attacks are harder

Prime-Probe Timing Profile

0 20 40 60 80 100

[-cache set number

20 40 60 80 100 120

|-cache set number

Model Victim VM Under
1ms MRT

Model Victim VM Under
Zero-MRT

Cache Timing per iCache set probe

(0 to 200 cycle range)

14

Elgamal Victim: Information Leakage

Minimum Bit Operations per Preemption
800 728
700
600
500
386
400
300
200 L 155
Avg: 0.096 ops]
100 33 68 I
4
O O T T - T . T T T
0 0.1 0.5 1 2 5 10
Xen MRT (ms)

Elgamal Side-channel rely on consecutive redundant observations for
noise-reduction

15

Security Limitations of MRT

Modular Exponentiation Algorithm:
SQUAREMULT(X, €, N):
Lete,, ..., e, be the bits of e
y 1

2. Only applicable to sub-class of fori=ndownto I do
y <— SQUARE(Y)

side-channels, and to virtualized y < MODREDUCE(Y, N)

; if e, = 1 then
setti ng' y «— MULT(y, X)

y «<— MODREDUCE(y, N)
end if

3. Interactive VMs that voluntarily | end for
. . t
relinquish the CPU ey
are still vulnerable!

1. Slower victims could still leak!

Per-core Shared State-Cleansing

Performance Evaluation

1. What is the overhead of turning on MRT?
— A 0.3% improvement for batch workloads

— On average 4% and at worst 7% overhead on
95t percentile latency

2. What is the overhead of cleansing on latency
sensitive real-world applications?

— adds a overhead of 10us for latency sensitive
workloads,

— At worst a 80-100us on 95 percentile latency

Conclusion

e Current state-of-the-art CPU schedulers do not
account for malicious users,

* First-of-its-kind security analysis of schedulers
* Introduce new design paradigm: soft-isolation

Future work

— Model preemption-driven side-channels and estimate
theoretical strength of MRT mechanism

— MRT-like mechanism for other system-level shared
resources.

A Simple, Secure Scheduler Design

iProtection Mechanisms

[Batch VM } [Involuntary } MRT Mechanism

(CPU hungry) Context-switches

Secures most victims |

All context- involved in
Scheduler s‘witches I.eak involuntary switches
L information |
VM-classification through shared | Secures all victims
hardware state involved in
. voluntary switches

{ Interactive VM } [Voluntary } S e

(1/0 intensive) Context-switches

19

Related Work

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
“Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds.” In CCS '09.

Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
“Cross-VM side channels and their use to extract private keys.” In
CCS'12.

Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas
Ristenpart, and Michael M. Swift. “Resource-freeing attacks: improve
your cloud performance (at your neighbor's expense).” In CCS’12

Questions?

Contact: venkatv@cs.wisc.edu

