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Layered Storage Discussion 
Layering Questions 
▪  Is layering free performance-wise? 

▪  Can layer integration be useful? 

▪  Should there be multiple HW layers? 

Layering Advantages 
▪  Simplicity (thus fewer software bugs) 

▪  Lower development costs 

▪  Code sharing between systems 
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Four activities do HDFS I/O: 
▪  Logging 

▪  Flushing 

▪  Foreground reads 

▪  Compaction 

Baseline I/O: 

▪  Flushing and foreground reads are always required 

HBase overheads: 

▪  Logging: useful for crash recovery (but not normal operation) 

▪  Compaction: improves performance (but not required for correctness) 
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Created Files: Size Distribution 

90% of files are <6.3MB 
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③  The dataset is large and cold: 2/3 of 120TB never touched 

④  Files are very small: 90% smaller than 6.3MB  



Workload Analysis Questions 
At each layer, what activities read or write? 

How large is the dataset? 

How large are created files? 

How sequential is I/O? 
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Reads: Run Size 

80% of runs (weighted by I/O) <250KB 



Workload Analysis Conclusions 
①  Layers amplify writes: 1% => 64% 

②  Data is read or written, but rarely both 

③  The dataset is large and cold: 2/3 of 120TB never touched 

④  Files are very small: 90% smaller than 6.3MB  

⑤  Fairly random I/O: 130KB median read run 
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Hardware Architecture: Workload Implications 

Option 1: pure disk 
▪  Very random reads 

▪  Small files 

Option 2: pure flash 
▪  Large dataset 

▪  Mostly very cold 

▪  >$10K / machine 

Option 3: hybrid 
▪  Process of elimination 



Evaluate cost and performance of 36 hardware combinations (3x3x4) 
▪  Disks:   10, 15, or 20 
▪  RAM (cache): 10, 30, or 100GB 
▪  Flash (cache):  0, 60, 120, or 240GB 
 

Assumptions: 

 

 

Hardware Architecture: Simulation Results 

Hardware Cost Performance 
HDD $100/disk 10ms seek, 100MB/s 
RAM $5/GB zero latency 
Flash $0.8/GB 0.5ms 
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Software Architecture: Workload Implications 

Writes are greatly amplified 

▪  1% at HDFS (excluding overheads) to 64% at disk 

▪  We should optimize writes 

61% of writes are for compaction 

▪  We should optimize compaction 

▪  Compaction interacts with replication inefficiently 
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Local Compaction 
Normally 3.5TB of network I/O 

Local comp: 62% reduction 

Network I/O becomes disk I/O 

▪  9% overhead (30GB cache) 

▪  Compaction reads: (a) usually 
misses, (b) pollute cache 

Still good! 

▪  Disk I/O is cheaper than network 
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Conclusion 1: Messages is a New HDFS Workload 

Original GFS paper: 

▪  “high sustained bandwidth is more important than low latency” 

▪  “multi-GB files are the common case” 

We find files are small and reads are random 

▪  50% of files <750KB 

▪  >75% of reads are random 



Conclusion 2: Layering is Not Free 
Layering “proved to be vital for the verification and logical soundness” of 
the THE operating system ~ Dijkstra 

We find layering is not free 
▪  Over half of network I/O for replication is unnecessary 

Layers can amplify writes, multiplicatively 
▪  E.g., logging overhead (10x) with replication (3x) => 30x write increase 

Layer integration can help 
▪  Local compaction reduces network I/O caused by layers 



Conclusion 3: Flash Should not Replace Disk 

Jim Gray predicted (for ~2012) that “tape is dead, disk is tape, flash is disk” 

We find flash is a poor disk replacement for Messages 

▪  Data is very large and mostly cold 

▪  Pure flash would cost >$10K/machine 

However, small flash tier is useful 

▪  A 60GB SSD cache can double performance for a 5% cost increase 



Thank you!  Any questions? 
University of Wisconsin-Madison Facebook Inc. 


