
Analysis of HDFS Under HBase
A Facebook Messages Case Study

Tyler Harter, Dhruba Borthakur*, Siying Dong*, Amitanand Aiyer*,
Liyin Tang*, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin-Madison *Facebook Inc.

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Represents HBase over HDFS

▪  Common backend at Facebook and
other companies

▪  Similar stack used at Google
(BigTable over GFS)

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:

▪  Cellphone texts

▪  Chats

▪  Emails

Represents HBase over HDFS

▪  Common backend at Facebook and
other companies

▪  Similar stack used at Google
(BigTable over GFS)

Represents layered storage

Building a Distributed Application (Messages)

We have many machines with many disks.
How should we use them to store messages?

Machine 1 Machine 3 Machine 2

Building a Distributed Application (Messages)

Messages

One option: use machines and disks directly.

Machine 1 Machine 3 Machine 2

Building a Distributed Application (Messages)

One option: use machines and disks directly.
Very specialized, but very high development cost.

Messages
Machine 1 Machine 3 Machine 2

Building a Distributed Application (Messages)

Messages
Machine 1 Machine 3 Machine 2

Building a Distributed Application (Messages)

HBase
Messages

Machine 1 Machine 3 Machine 2

Use HBase for K/V logic

Worker
Hadoop File System

Messages
HBase

Worker Worker
Machine 1 Machine 3 Machine 2

Use HBase for K/V logic
Use HDFS for replication

Building a Distributed Application (Messages)

Worker
Hadoop File System

Messages
HBase

Worker Worker
Machine 1 Machine 3 Machine 2

Building a Distributed Application (Messages)

FS FS FS FS FS FS FS FS FS FS FS FS

Use HBase for K/V logic
Use HDFS for replication
Use Local FS for allocation

Layered Storage Discussion
Layering Questions
▪  Is layering free performance-wise?

▪  Can layer integration be useful?

▪  Should there be multiple HW layers?

Layering Advantages
▪  Simplicity (thus fewer software bugs)

▪  Lower development costs

▪  Code sharing between systems

Worker
Hadoop File System

Messages
HBase

Worker Worker
Machine 1 Machine 3 Machine 2

FS FS FS FS FS FS FS FS FS FS FS FS

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

Methodology

Messages

HBase

HDFS

Local FS

Actual stack

Methodology

Messages

HBase

HDFS

Local FS

HDFS Traces

Hadoop Trace FS (HTFS)
▪  Collects request details

▪  Reads/writes, offsets, lengths

▪  9 shadow machines

▪  8.3 days

Actual stack

Methodology

Messages

HBase

HDFS

Local FS

HDFS Traces

MapReduce Analysis Pipeline

Workload Analysis

Actual stack

Methodology

Messages

HBase

HDFS

Local FS

HDFS Traces

MapReduce Analysis Pipeline

Workload Analysis

HBase+HDFS
Actual stack Simulated stack

Local Traces
(inferred)

what -ifs

Local Storage
what -ifs

Simulation Results

Methodology

Messages

HBase

HDFS

Local FS

HDFS Traces

Actual stack

Methodology

Messages

HBase

HDFS

Local FS
Background: how does HBase use HDFS?

Actual stack

HDFS Traces

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

HBase’s HDFS Files
Four activities do HDFS I/O:

HDFS files:

HBase memory:

MemTable

LOG

Four activities do HDFS I/O:
▪  Logging

HDFS files:

HBase memory:

MemTable

HBase receives a put()

LOG

HBase’s HDFS Files

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

HDFS files:

HBase memory:

MemTable

After many puts, MemTable is full

LOG

HBase’s HDFS Files
Four activities do HDFS I/O :
▪  Logging

▪  Flushing

HDFS files:

HBase memory:

MemTable

Flush MemTable to sorted file

DATA LOG

HBase’s HDFS Files
Four activities do HDFS I/O :
▪  Logging

▪  Flushing

HDFS files:

HBase memory:

MemTable

DATA LOG

HBase’s HDFS Files
Four activities do HDFS I/O :
▪  Logging

▪  Flushing

HDFS files:

HBase memory:

After many flushes, files accumulate

MemTable

DATA

DATA

DATA

DATA

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

HDFS files:

HBase memory:

get() requests may check many of these

MemTable

DATA

DATA

DATA

DATA

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

▪  Foreground reads

HDFS files:

HBase memory:

get() requests may check many of these

MemTable

DATA

DATA

DATA

DATA

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

▪  Foreground reads

▪  Compaction

HDFS files:

HBase memory:

LOG

compaction merge sorts the files

MemTable

DATA

DATA

DATA

DATA

DATA

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

▪  Foreground reads

▪  Compaction

HDFS files:

HBase memory:

compaction merge sorts the files

MemTable

DATA LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

▪  Foreground reads

▪  Compaction

Baseline I/O:

▪  Flushing and foreground reads are always required

HBase’s HDFS Files
Four activities do HDFS I/O:
▪  Logging

▪  Flushing

▪  Foreground reads

▪  Compaction

Baseline I/O:

▪  Flushing and foreground reads are always required

HBase overheads:

▪  Logging: useful for crash recovery (but not normal operation)

▪  Compaction: improves performance (but not required for correctness)

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

Workload Analysis Questions
At each layer, what activities read or write?

How large is the dataset?

How large are created files?

How sequential is I/O?

Workload Analysis Questions
At each layer, what activities read or write?

How large is the dataset?

How large are created files?

How sequential is I/O?

Baseline HDFS I/O:

Cross-layer R/W Ratios

0 20 40 60 80 100
I/O (TB)

cache
misses

1% writes

reads writes

Baseline HDFS I/O:

Cross-layer R/W Ratios

compact LO
G

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

1% writes

21% writes

Baseline HDFS I/O:

Cross-layer R/W Ratios

compact LO
G

R1 R2 R3

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

Local FS:

1% writes

21% writes

45% writes

replicas

Baseline HDFS I/O:

Cross-layer R/W Ratios

compact LO
G

R1 R2 R3

0 20 40 60 80 100
I/O (TB)

cache
misses

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

Local FS:

Disk:

1% writes

64% writes

21% writes

45% writes

Workload Analysis Conclusions
①  Layers amplify writes: 1% => 64%

u  Logging, compaction, and replication increase writes

u  Caching decreases reads

Workload Analysis Questions
At each layer, what activities read or write?

How large is the dataset?

How large are created files?

How sequential is I/O?

LOGcompact

0 20 40
Footprint (TB)

R1 R2 R3

Baseline HDFS I/O:

Cross-layer Dataset (Accessed Data)

All HDFS I/O:

Local (FS/disk):

18% written

77% written

91% written

0 20 40
Footprint (TB)

R1 R2 R3

Workload Analysis Conclusions
①  Layers amplify writes: 1% => 64%

②  Most touched data is only written

LOGcompact

0 20 40
Footprint (TB)

R1 R2 R3

Baseline HDFS I/O:

Cold Data

All HDFS I/O:

Local (FS/disk):

0 20 40
Footprint (TB)

R1 R2 R3

0 20 40
Footprint (TB)

R1 R2 R3

Cold Data

Local (FS/disk):

0 20 40
Footprint (TB)

R1 R2 R3

Cold Data

Local (FS/disk):

0 20 40 60 80 100 120
Footprint (TB)

R1 R2 R3 cold data

0 20 40 60 80 100 120
Footprint (TB)

R1 R2 R3 cold data

Workload Analysis Conclusions
①  Layers amplify writes: 1% => 64%

②  Most touched data is only written

③  The dataset is large and cold: 2/3 of 120TB never touched

Workload Analysis Questions
At each layer, what activities read or write?

How large is the dataset?

How large are created files?

How sequential is I/O?

Created Files: Size Distribution

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

Created Files: Size Distribution

50% of files are <750KB

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

Created Files: Size Distribution

90% of files are <6.3MB

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

Workload Analysis Conclusions
①  Layers amplify writes: 1% => 64%

②  Most touched data is only written

③  The dataset is large and cold: 2/3 of 120TB never touched

④  Files are very small: 90% smaller than 6.3MB

Workload Analysis Questions
At each layer, what activities read or write?

How large is the dataset?

How large are created files?

How sequential is I/O?

Reads: Run Size

Reads: Run Size

50% of runs (weighted by I/O) <130KB

Reads: Run Size

80% of runs (weighted by I/O) <250KB

Workload Analysis Conclusions
①  Layers amplify writes: 1% => 64%

②  Data is read or written, but rarely both

③  The dataset is large and cold: 2/3 of 120TB never touched

④  Files are very small: 90% smaller than 6.3MB

⑤  Fairly random I/O: 130KB median read run

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

Hardware Architecture: Workload Implications

Option 1: pure disk Option 2: pure flash Option 3: hybrid

Hardware Architecture: Workload Implications

Option 1: pure disk
▪  Very random reads

▪  Small files

Option 2: pure flash Option 3: hybrid

Hardware Architecture: Workload Implications

Option 1: pure disk
▪  Very random reads

▪  Small files

Option 2: pure flash Option 3: hybrid

Hardware Architecture: Workload Implications

Option 1: pure disk
▪  Very random reads

▪  Small files

Option 2: pure flash
▪  Large dataset

▪  Mostly very cold

▪  >$10K / machine

Option 3: hybrid

Hardware Architecture: Workload Implications

Option 1: pure disk
▪  Very random reads

▪  Small files

Option 2: pure flash
▪  Large dataset

▪  Mostly very cold

▪  >$10K / machine

Option 3: hybrid

Hardware Architecture: Workload Implications

Option 1: pure disk
▪  Very random reads

▪  Small files

Option 2: pure flash
▪  Large dataset

▪  Mostly very cold

▪  >$10K / machine

Option 3: hybrid
▪  Process of elimination

Evaluate cost and performance of 36 hardware combinations (3x3x4)
▪  Disks: 10, 15, or 20
▪  RAM (cache): 10, 30, or 100GB
▪  Flash (cache): 0, 60, 120, or 240GB

Assumptions:

Hardware Architecture: Simulation Results

Hardware Cost Performance
HDD $100/disk 10ms seek, 100MB/s
RAM $5/GB zero latency
Flash $0.8/GB 0.5ms

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

Cost/performance tradeoff for 36 hardware combinations

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

Upgrades decrease latency but increase cost

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

Good upgrade

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

Bad upgrade

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

10 disks

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 15 disks

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 20 disks

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 20 disks

Upgrading disk:

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

10GB RAM

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 30GB RAM

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 100GB RAM

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 100GB RAM

Upgrading RAM:

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

no flash!

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 60GB flash

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 120GB flash

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 240GB flash

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

upgrade to 240GB flash

Upgrading flash:

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

Software Architecture: Workload Implications

Writes are amplified

▪  1% at HDFS (excluding overheads) to 64% at disk (given 30GB RAM)

▪  We should optimize writes

Software Architecture: Workload Implications

Writes are greatly amplified

▪  1% at HDFS (excluding overheads) to 64% at disk

▪  We should optimize writes

61% of writes are for compaction

▪  We should optimize compaction

▪  Compaction interacts with replication inefficiently

Replication Overview

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Problem: Network I/O (red lines)

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Solution: Ship Computation to Data

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Solution: do Local Compaction

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

do compact do compact

Solution: do Local Compaction

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

compaction compaction compaction

Local Compaction
R

ea
d

I/O
 (T

B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

Normally 3.5TB of network I/O

Local Compaction
Normally 3.5TB of network I/O

Local comp: 62% reduction

R
ea

d
I/O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)

2.2

Local Compaction
Normally 3.5TB of network I/O

Local comp: 62% reduction

R
ea

d
I/O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)
disk (normal)2.2

Local Compaction
Normally 3.5TB of network I/O

Local comp: 62% reduction

Network I/O becomes disk I/O

▪  9% overhead (30GB cache)

▪  Compaction reads: (a) usually
misses, (b) pollute cache

R
ea

d
I/O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)
disk (normal)

disk (local)

2.4

2.2

Local Compaction
Normally 3.5TB of network I/O

Local comp: 62% reduction

Network I/O becomes disk I/O

▪  9% overhead (30GB cache)

▪  Compaction reads: (a) usually
misses, (b) pollute cache

Still good!

▪  Disk I/O is cheaper than network

R
ea

d
I/O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)
disk (normal)

disk (local)

2.4

2.2

Outline
Intro

▪  Messages stack overview

▪  Methodology: trace-driven analysis and simulation

▪  HBase background

Results

▪  Workload analysis

▪  Hardware simulation: adding a flash layer

▪  Software simulation: integrating layers

Conclusions

Conclusion 1: Messages is a New HDFS Workload

Original GFS paper:

▪  “high sustained bandwidth is more important than low latency”

▪  “multi-GB files are the common case”

We find files are small and reads are random

▪  50% of files <750KB

▪  >75% of reads are random

Conclusion 2: Layering is Not Free
Layering “proved to be vital for the verification and logical soundness” of
the THE operating system ~ Dijkstra

We find layering is not free
▪  Over half of network I/O for replication is unnecessary

Layers can amplify writes, multiplicatively
▪  E.g., logging overhead (10x) with replication (3x) => 30x write increase

Layer integration can help
▪  Local compaction reduces network I/O caused by layers

Conclusion 3: Flash Should not Replace Disk

Jim Gray predicted (for ~2012) that “tape is dead, disk is tape, flash is disk”

We find flash is a poor disk replacement for Messages

▪  Data is very large and mostly cold

▪  Pure flash would cost >$10K/machine

However, small flash tier is useful

▪  A 60GB SSD cache can double performance for a 5% cost increase

Thank you! Any questions?
University of Wisconsin-Madison Facebook Inc.

