
1 

Rinnegan: Efficient Resource 
Use of Heterogeneous 

Processors  
 
 

Sankaralingam Panneerselvam 
Michael Swift 

 
University of Wisconsin - Madison 

 
 WISDOM '14 



Heterogeneity in Architectures 

WISDOM '14 2 

GPU 

Wire speed processor 

APU 

DySER 

Crypto accelerator 

Intel Sandy Bridge 

ARM 
big.LITTLE 

WiDGET 
Turbo 
Boost 

Core 
Fusion 

FPGA 



Resource Management 

WISDOM '14 3 

} Accelerator Management 
}  Accelerators will be easy to use [CUDA, OpenCL, 

C++ AMP] 
}  Treat like any other shared resource [PTask] 

}  Power Limits 
}  Dark Silicon:  All units cannot be used at the high 

performance 
}  Hardware does not possess sufficient knowledge for 

power distribution 



Applications meet Heterogeneity 

WISDOM '14 4 

} Task can run on many processing units 
}  E.g. Parallel tasks - GPU or multi-core CPUs 

   Encryption - crypto accelerator or AES 
}  Accelerators do not always yield better efficiency 

}  Contention for accelerator 
}  Data transfer overhead: Latency to copy 64 bytes of 

data onto GPU takes 6 μs  

}  Power limits could prevent applications from 
using devices at full performance 



Rinnegan 

WISDOM '14 5 

}  Goals 
}  Accelerators and Power should be treated as 

primary resource in the system 
}  Applications should leverage heterogeneity with 

less efforts 
}  Target architecture include 
}  Discrete accelerators, on-chip accelerators, single-

ISA and multi-ISA heterogeneous processors 



Outline 

WISDOM '14 6 

} Motivation 
} Rinnegan 
} Evaluation 
} Conclusion 



Rinnegan 

WISDOM '14 7 

}  Layered system with two major components 
}  OpenKernel 

} Enforces scheduling policies 
} Exports usage information to application side 
} Enables power awareness in the system 

}  Libadept (runtime in user mode) 
} Helps to deal with heterogeneity 
} Handles task placement 



[OpenKernel] Accelerator Agent 

WISDOM '14 8 

}  Every class of accelerator 
has its own agent 

}  Similar to device driver 
} Roles of an agent 

1.  Expose utilization 
information 

2.  Implement scheduling 
decisions 

3.  Enforces power limits 

Ke
rn

el
 S

pa
ce

 
O

pe
nK

er
ne

l 

Process making use of Accelerator  

Libadept 

U
se

r 
Sp

ac
e 

Accelerator Monitor 

D
ev

ic
es

 

CPUs 
Heterogeneo

us Core 
GPUs Crypto 

Accelerator 

 
 

Accelerator Agents 
(H-Core, CPUs, GPU, Crypto) 

 
 

  



[OpenKernel] Power Abstraction 

WISDOM '14 9 

}  Power credits 
}  Maintained by a central 

entity called Power center  
}  Ability to use credits for 

computation 
}  Power limit is expressed 

in terms of power credits 

Ke
rn

el
 S

pa
ce

 
O

pe
nK

er
ne

l 

Process making use of Accelerator  

Libadept 

U
se

r 
Sp

ac
e 

Accelerator Monitor 

D
ev

ic
es

 

CPUs 
Heterogeneo

us Core 
GPUs Crypto 

Accelerator 

 
 

Power 
Center 

 
 

 
 

    Accelerator  
                  Agents 

 
 

Power Agent 
 
 Power 

Modeling 



[OpenKernel] Power Accounting 

WISDOM '14 10 

}  Measure the power consumed by each processing 
unit for every task 

}  Power Agent 
}  Part of the Accelerator Agent 
}  Power model (From device or software) 

} Power credits needed for a task to run 
} Mapping between power credits and power-state 

}  Gathers sufficient power credits on behalf of the 
task 



[OpenKernel] Accelerator Monitor 

WISDOM '14 11 

}  Publishes information 
exposed by agents to 
applications 

}  Supports mechanism to 
notify application on 
resource-availability 
events 

Ke
rn

el
 S

pa
ce

 
O

pe
nK

er
ne

l 

Process making use of Accelerator  

Libadept 

U
se

r 
Sp

ac
e 

Accelerator Monitor 

D
ev

ic
es

 

CPUs 
Heterogeneo

us Core 
GPUs Crypto 

Accelerator 

 
 

Power 
Center 

 
 

 
 

    Accelerator  
                  Agents 

 
 

Power Agent 
 
 Power 

Modeling 

Subscription/
Notification 
Mechanism 

1.  System guarantees like fairness, isolation are provided 
2.  Exposes device usage information to help with task 

placement in the application 
3.  Power awareness in the system 



Rinnegan 

WISDOM '14 12 

}  Layered system with two major components 
}  OpenKernel 

} Enforces scheduling policies 
} Exports usage information to application side 
} Enables power awareness in the system 

}  Libadept (runtime in user mode) 
} Helps to deal with heterogeneity 
} Handles task placement 



Libadept Runtime 

WISDOM '14 13 

} Accelerator Stub abstracts 
different processing units 

}  Includes a profiler that 
predicts task performance  

}  Selects best processing unit 
to yield better efficiency 
}  Assume multiple 

implementations are available 

Ke
rn

el
 S

pa
ce

 

Process making use of Accelerator  

Libadept 

U
se

r 
Sp

ac
e 

Li
ba

de
pt

 

Accelerator Monitor 

D
ev

ic
es

 

CPUs 
Heterogeneo

us Core 
GPUs Crypto 

Accelerator 

 
 

Power 
Center 

 
 

 
 

    Accelerator  
                  Agents 

 
 

Power Agent 
 
 Power 

Modeling 



Outline 

WISDOM '14 14 

} Motivation 
} Rinnegan 
} Evaluation 
} Conclusion 



Configuration 

WISDOM '14 15 

 Machine (i) GPU-B: Powerful GPU (NVIDIA Geforce 670) 
(ii) GPU-W: Wimpy GPU (NVIDIA Geforce 650) 
(iii)12 Cores in 2 intel Xeon 5650 
 
Quad core Sandy-Bridge machine for power results 
 

 
 
 
Workloads 

(1) Histogram Searching for occurrences of dictionary 
words in a list of files  

(2) Grep String search 

(3) LBM Fluid dynamics simulation implemented in 
OpenCL 

(4) DXT Image DXT Compression 

(5) AES AES-128-ECB mode enryption 

(6) lavaMD Particle simulation 



Evaluation 

WISDOM '14 16 

} Adaptability:  
}  Can applications leverage heterogeneity through 

OpenKernel? 

}  Isolation:  
}  Does Rinnegan provide performance isolation in 

the presence of greedy applications? 

}  Power distribution: 
}  Can Rinnegan leverage heterogeneity in a power-

constrained architecture? 



Adaptability 

WISDOM '14 17 

0 20 40 61 81 101 

DXT 

AES 

LBM 

Grep 

Histogram 

lavaMD 

G
PU

-B
   

G
PU

-W
  C

PU
s 

G
PU

-B
  G

PU
-W

   
C

PU
s 

G
PU

-B
   

 G
PU

-W
   

C
PU

s 

Rinnegan schedules tasks on lower performing 
processing units but is less crowded and thereby 

achieving better overall efficiency 



Isolation 

WISDOM '14 

0 

20 

40 

60 

80 

100 

AES 

DXT 

lavaMD 

LBM 

Grep 

Histogram 

Native 
(GPU-B) 

GPU-B     GPU-W    CPUs 
FIFO 

Shares  
native 

(GPU-B) 

GPU-B      GPU-W     CPUs 
Shares Rinnegan 

18 

Rinnegan is able to isolate performance even in 
the presence of applications that does not use 

Rinnegan through accelerator agents 



Power Distribution 

WISDOM '14 19 

0 

10 

20 

30 

40 

50 

1 11 19 30 42 50 59 

Po
w

er
 c

re
di

ts
 

Time progress in seconds (non-linear scale) 

BS GREP AES LLC Power Shares 1.5:1:3 

Rinnegan is able to distribute limited power to 
applications based on their importance 



Conclusion 
} Heterogeneous architectures will be common 
} Rinnegan leverages heterogeneity through 
}  OpenKernel:  

} System guarantees on resources like accelerators 
and power  

} Helps application by exposing usage information 
}  Libadept:  

} Helps in choosing the right configuration 

20 WISDOM '14 



21 

Thank You 
 

For further questions: sankarp@cs.wisc.edu 

WISDOM '14 



Task Placement  
} Moving placement to applications simplifies 

kernel which only need to handle scheduling 
}  Selecting best processing unit requires a 

performance model of application code 
} Application have best knowledge of their 

scheduling goals 
}  Some accelerators can be accessed directly 

from user mode 

22 WISDOM '14 



Sample Program   

WISDOM '14 23 

/*** Libadept ***/ 
void Accelerate(Task *task, bool sync) { 

if(appInfo.optimizer) punit = appInfo.optimizer(); 
else punit = defaultOptimizer(); 
Schedule(task, punit); 

} 
 
/*** Application ***/ 
void TaskGpu(void *args) {/* Task logic on GPU */} 
void TaskCPU(void *args) {/* Task logic on CPU */} 
 
int main() { 

... 
Task *task = InitializeTask(); 
AssociateAcceleratorTask(task, SIMD, TaskGPU, TaskCPU, args); 
Accelerate(task, ASYNC); 
WaitForTask(task); 
... 

} 
 


