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Heterogeneity in Architectures 
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Resource Management 
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} Accelerator Management 
}  Accelerators will be easy to use [CUDA, OpenCL, 

C++ AMP] 
}  Treat like any other shared resource [PTask] 

}  Power Limits 
}  Dark Silicon:  All units cannot be used at the high 

performance 
}  Hardware does not possess sufficient knowledge for 

power distribution 



Applications meet Heterogeneity 
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} Task can run on many processing units 
}  E.g. Parallel tasks - GPU or multi-core CPUs 

   Encryption - crypto accelerator or AES 
}  Accelerators do not always yield better efficiency 

}  Contention for accelerator 
}  Data transfer overhead: Latency to copy 64 bytes of 

data onto GPU takes 6 μs  

}  Power limits could prevent applications from 
using devices at full performance 



Rinnegan 
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}  Goals 
}  Accelerators and Power should be treated as 

primary resource in the system 
}  Applications should leverage heterogeneity with 

less efforts 
}  Target architecture include 
}  Discrete accelerators, on-chip accelerators, single-

ISA and multi-ISA heterogeneous processors 



Outline 
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} Motivation 
} Rinnegan 
} Evaluation 
} Conclusion 



Rinnegan 
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}  Layered system with two major components 
}  OpenKernel 

} Enforces scheduling policies 
} Exports usage information to application side 
} Enables power awareness in the system 

}  Libadept (runtime in user mode) 
} Helps to deal with heterogeneity 
} Handles task placement 



[OpenKernel] Accelerator Agent 
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}  Every class of accelerator 
has its own agent 

}  Similar to device driver 
} Roles of an agent 

1.  Expose utilization 
information 

2.  Implement scheduling 
decisions 

3.  Enforces power limits 
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[OpenKernel] Power Abstraction 
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}  Power credits 
}  Maintained by a central 

entity called Power center  
}  Ability to use credits for 

computation 
}  Power limit is expressed 

in terms of power credits 
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[OpenKernel] Power Accounting 
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}  Measure the power consumed by each processing 
unit for every task 

}  Power Agent 
}  Part of the Accelerator Agent 
}  Power model (From device or software) 

} Power credits needed for a task to run 
} Mapping between power credits and power-state 

}  Gathers sufficient power credits on behalf of the 
task 



[OpenKernel] Accelerator Monitor 
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}  Publishes information 
exposed by agents to 
applications 

}  Supports mechanism to 
notify application on 
resource-availability 
events 
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Subscription/
Notification 
Mechanism 

1.  System guarantees like fairness, isolation are provided 
2.  Exposes device usage information to help with task 

placement in the application 
3.  Power awareness in the system 



Rinnegan 
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}  Layered system with two major components 
}  OpenKernel 

} Enforces scheduling policies 
} Exports usage information to application side 
} Enables power awareness in the system 

}  Libadept (runtime in user mode) 
} Helps to deal with heterogeneity 
} Handles task placement 



Libadept Runtime 
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} Accelerator Stub abstracts 
different processing units 

}  Includes a profiler that 
predicts task performance  

}  Selects best processing unit 
to yield better efficiency 
}  Assume multiple 

implementations are available 
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Outline 
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} Motivation 
} Rinnegan 
} Evaluation 
} Conclusion 



Configuration 
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 Machine (i) GPU-B: Powerful GPU (NVIDIA Geforce 670) 
(ii) GPU-W: Wimpy GPU (NVIDIA Geforce 650) 
(iii)12 Cores in 2 intel Xeon 5650 
 
Quad core Sandy-Bridge machine for power results 
 

 
 
 
Workloads 

(1) Histogram Searching for occurrences of dictionary 
words in a list of files  

(2) Grep String search 

(3) LBM Fluid dynamics simulation implemented in 
OpenCL 

(4) DXT Image DXT Compression 

(5) AES AES-128-ECB mode enryption 

(6) lavaMD Particle simulation 



Evaluation 
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} Adaptability:  
}  Can applications leverage heterogeneity through 

OpenKernel? 

}  Isolation:  
}  Does Rinnegan provide performance isolation in 

the presence of greedy applications? 

}  Power distribution: 
}  Can Rinnegan leverage heterogeneity in a power-

constrained architecture? 



Adaptability 
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Rinnegan schedules tasks on lower performing 
processing units but is less crowded and thereby 

achieving better overall efficiency 



Isolation 
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Rinnegan is able to isolate performance even in 
the presence of applications that does not use 

Rinnegan through accelerator agents 



Power Distribution 

WISDOM '14 19 

0 

10 

20 

30 

40 

50 

1 11 19 30 42 50 59 

Po
w

er
 c

re
di

ts
 

Time progress in seconds (non-linear scale) 

BS GREP AES LLC Power Shares 1.5:1:3 

Rinnegan is able to distribute limited power to 
applications based on their importance 



Conclusion 
} Heterogeneous architectures will be common 
} Rinnegan leverages heterogeneity through 
}  OpenKernel:  

} System guarantees on resources like accelerators 
and power  

} Helps application by exposing usage information 
}  Libadept:  

} Helps in choosing the right configuration 
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Thank You 
 

For further questions: sankarp@cs.wisc.edu 
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Task Placement  
} Moving placement to applications simplifies 

kernel which only need to handle scheduling 
}  Selecting best processing unit requires a 

performance model of application code 
} Application have best knowledge of their 

scheduling goals 
}  Some accelerators can be accessed directly 

from user mode 
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Sample Program   
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/*** Libadept ***/ 
void Accelerate(Task *task, bool sync) { 

if(appInfo.optimizer) punit = appInfo.optimizer(); 
else punit = defaultOptimizer(); 
Schedule(task, punit); 

} 
 
/*** Application ***/ 
void TaskGpu(void *args) {/* Task logic on GPU */} 
void TaskCPU(void *args) {/* Task logic on CPU */} 
 
int main() { 

... 
Task *task = InitializeTask(); 
AssociateAcceleratorTask(task, SIMD, TaskGPU, TaskCPU, args); 
Accelerate(task, ASYNC); 
WaitForTask(task); 
... 

} 
 


