

Rethinking Security in the Era of Cloud Computing

Thomas Ristenpart

Public IaaS clouds (Infrastructure-as-a-Service)

Threat models and cloud research

Real-world examples:

Insiders
Compromise of control plane
Government surveillance

Real-world examples:

Co-location attacks / side-channel attacks Compromised VMs External attackers (SQL injection, DoS, etc.)

Threat models and cloud research

(2a) New threats in public clouds

Focuses on intersection of resource sharing and adversarial tenants; new technologies used


```
Side-channel attacks and defenses
(See Venkat's talk)

Pricing and resource abuse
(Resource-freeing attacks,
placement gaming,
billing measurements – See Rob's talk)

Technology issues
(RNGs in virtualized environments – See Adam's talk)
```

Threat models and cloud research

(2a) New threats in public clouds

Focuses on intersection of resource sharing and adversarial tenants; new technologies used

(2b) Dealing with old threats, better

Focuses on leveraging provider & control plane to help tenant security

Project Silver

Broad research agenda on how cloud providers can help improve security for the tenant ecosystem

The goal: It is *safer* to run in the cloud

The opportunity

CLOUD FOUNDRY™

The migration to cloud services:

- 4% of Alexa Top Million websites using EC2/Azure (See Keqiang's talk)
- Centralization of hosting into fewer large providers
- Cloud providers (or third-parties) adding features

Multi-institution effort

Wyas Sekar Mike Swift

Tom Ristenpart

Jeff Chase

Peng Ning

Mike Reiter

Mladen Vouk

Multi-institution effort

Selettrativasad Crypte Ning

Jay Aikat

Mike Reiter Mladen Vouk

Project Overview

Project Overview

Today: Ongoing projects involving WISDOM

- Cloud observatory
 - Provide data sets and methodologies for understanding how cloud usage evolves
- New laaS Security Services
 - Security-posture audit tools (SPATs)
 - Other projects

Cloud observatory

 Measure usage, security posture of cloud tenants

- Generating several rich datasets
- Analysis and opportunity finding

Example questions to answer

- What is distribution of deployment types?
- How much churn is there? (Turnover rate per IP address)
- Are software updates reaching cloud tenants quickly?
- What kinds of malicious activity arise? Are IPbased blacklists working well for laaS clouds?

Cloud observatory data sets

Alexa subdomains DNS records

University packet capture

IP crawl dataset

Cloud observatory data sets

Fetch HTML content of web pages ~ every 3 days (using IP address)

Extract features to cluster IP addresses for same web page

MySQL database with front-end for running analyses

EC2: 3 months (Oct, Nov, Dec 2013)

Azure: 2 months (Nov, Dec 2013)

IP crawl dataset

900 GB of data HTTP get

ECP: Rangemillion unliqueelles respond. ~300K unique clus Who Was

Azure: ~150K unique IPs respond. ~40Kiµqique cluster's

Clustering,

DB

Cluster-based analysis

- Six-tuple to *fingerprint* an IP during a measurement round
 - <title> </title> content
 - Keywords
 - Server software and version
 - Generator tags (e.g., PHP vs. Ruby backend)
 - Google Analytics ID number
 - SimHash of HTML textual content
- Use unsurpervised clustering. Parameters chosen using gap analysis

IP address responses over time (Azure)

IP address responses over time (EC2)

Number of page clusters over time

Number of IPs in EC2 reporting different PHP versions over time

Malicious Activity?

- 3.2 million URLs collected in average 3-day period. Ran through Google SafeBrowsing.
 - 197 unique EC2 IPs contained >=1 malicious URL
 - 13 unique Azure IPs contained >=1 malicious URL
- VirusTotal (Feb 2014): 3,840 unique EC2 IPs
 - Most associated with URLs (typical keyword in domains: "download")
 - Investigated 98 in depth:
 - use clustering to find further IPs (199 extra IPs found)
- Either case: Average uptime is ~7 days (outliers: 90+ days)

VirusTotal blacklist uptime for 98 malicious webpages

of days website available **before** appearing on blacklist

of days website available *after* last appearing on blacklist

Type 1, 2, 3 refer to different patterns of malicious deployments

Cloud Observatory is Ongoing Work

 Measure usage, security posture of cloud tenants

- Generating several rich datasets
- Analysis and opportunity finding

Questions for you:

- Other questions to ask?
- Other ideas for methodologies?
- Further data sets?

Today: Ongoing projects involving WISDOM

- Cloud observatory
 - Provide data sets and methodologies for understanding how cloud usage evolves
- New laaS Security Services
 - Security-posture audit tools (SPATs)
 - Other projects

Security Services for Tenants

IaaS control plane as trusted third-party for tenants

Somewhat analogous to kernel/userland interface

What can be done with this viewpoint?

Security group settings (firewall)

Currently: Logging / billing records

HSM

PaaS/SaaS value-added services

Tenant A

Tenant B

Provider

A motivating example: Confidentiality-preserving data mining

Analysis by Alice

Alice wants to run her computations over Bob's data, but doesn't want to give Bob her code

Data owned by Bob

Bob's wants to allow this, but needs guarantees about the use of his confidential/private data

Examples:

Clinical outcomes data
Demographic information
Advertising data sets
Survey responses
Network security logs

• • •

Unsatisfying approach #1

Unsatisfying approach #2

Alice setups up laaS VM images and lets Bob run them

Bob runs image and gives it access to data

Tenant B

Alice loses control over her proprietary code and outputs

Provider

Bob may not be able to know what VM image does with data

Unsatisfying approach #3

Alice and Bob use cryptography (multiparty computation)

Instead: Leverage the provider

Alice sets up laaS VM(s)

Bob gives Alice access to data

Tenant B

Security posture audit tools (SPATs)

Assertion

Provider

Provider can make assertions about Alice's VM to Bob

Examples:

Specific VM image booted Firewall settings in order Bandwidth limits in place Instance will terminate soon

..

Security-Posture Audit Tools

What SPATs are useful?

How does Alice opt-in to let Bob use SPATs on her VM instances?

Tenant A

Tenant B

Assertion

Provider

How do tenants identify audited instances?

Can we make this transparent to users? SPAT-audited PaaS platform?

Ongoing work: SPATs on OpenStack

Security-Posture Audit Tools

• The future?

 PaaS confidentialitypreserving data-mining platform with laaS provider SPAT-based root-of-trust

Questions for you:

- Ideas for SPATs?
- SPAT use cases and requirements?
- Integration thoughts?

Some Other Silver Projects

- Unifying approach to authorization with trust logics
 - SAFE (safeclouds.org)
- Policy management
 - SDAC (Software-defined access control), user-facing interfaces, tools to aid policy configuration
- Infrastructure
 - SDN, middleboxes, hypervisors
- Encryption services
 - >90% of EC2 web connections are HTTP (circa 2012)
 - Can we change that to HTTPS (or something even better)?

New encryption primitives

Format-transforming encryption

 Encryption whose ciphertexts guaranteed to match against input regex
 [Dyer et al., CCS 2013]

Message-locked encryption

 Encryption for which outsourced storage can dedup given just ciphertexts

[Bellare et al., Eurocrypt 2013], [Bellare et al., USENIX 2013]

Honey encryption

 Password-based encryption for which decrypting with wrong password leads to plausible plaintext [Juels and Ristenpart, Eurocrypt 2014]

Rethinking Security in the Era of Cloud Computing

- Cloud observatory
- SPATs and laaS root-of-trust primitives
- Other Silver Projects

Feedback please!