
OFf: Bugspray for Openflow 	

	

Ram Durairajan, Joel Sommers, Paul Barford	

rkrish@cs.wisc.edu	

Motivation	

•  Debugging SDN applications is hard	

•  “Runs as designed” may be insufficient	

•  Deployments must cope with wide range of

operating conditions	

•  How can we answer the following question:	

	

Will my SDN app run as designed when deployed in
a live setting?	

rkrish@cs.wisc.edu	

Our	
 Solu2on:	
 OFf!	

Design Goals of OFf	

•  A debugging and test environment for SDN
developers	

•  Default debugging options	

•  Stepping, breakpoints, watch variables, etc.	

•  Comprehensive testing for SDN applications	

•  Packet replay, packet tracing, visualization, alerts, etc.	

•  Tie unwanted network behavior to controller	

•  Simple, light-weight and no hardware support	

•  Facilitate transition to live environments	

rkrish@cs.wisc.edu	

Related work	

•  Debuggers	

– ndb (Handigol et al., 2012)	

– NetSight (Handigol et al., 2014)	

•  Replay tool	

– OFRewind (Wundsam et al., 2011)	

•  Static analysis and symbolic execution tools	

– Veriflow (Kurshid et al., 2013)	

– Header Space Analysis (Kazemian et al., 2012)	

– NICE (Canini et al., 2012)	

rkrish@cs.wisc.edu	

OFf Architecture	

rkrish@cs.wisc.edu	

OFf Commands	

•  longlist and shortlist source code 	

•  pretty print expressions	

•  hide and unhide frames	

•  interactive interpreter with all variables in scope	

•  track, watch, or unwatch variables	

•  edit source files during debugging	

•  enable or disable break points on the fly 	

•  sticky mode to visualize code	

rkrish@cs.wisc.edu	

OFf Additional Features	

•  Trace packet through the network	

– Holistic view of flows, controller and switches	

– No additional hardware 	

•  Replay packets later	

– No OFP modification	

•  Defect configuration changes	

– Topology changes	

– Rule/action changes	

– Performance variations	

rkrish@cs.wisc.edu	

OFf in Action	

•  We demonstrate OFf in three scenarios	

–  Incorrect ordering of updates	

– Bad multi-app interaction	

– Unexpected rule expiration	

•  Goal: Identify logical bugs in the source code
that lead to transient outages and losses	

rkrish@cs.wisc.edu	

Incorrect Ordering of Updates	

rkrish@cs.wisc.edu	

Solution: Incorrect ordering	

•  Installation order - C, B, and then A	

•  Handle barrier messages	

	

•  Using OFf	

– Replay packets 	

•  find packets that are dropped at B as rules are not installed	

–  Set a break point => sticky mode => watch at B	

–  Infer ordering problem and fix	

– Trace and Diff Reports to verify fix	

rkrish@cs.wisc.edu	

 3020

 3040

 3060

 3080

 3100

 3120

 3140

 5 10 15 20

B
y
t
e
s

P
r
o
c
e
s
s
e
d

(
K
B
)

Time (s)

Before
After

Bad Multi-app Interaction	

rkrish@cs.wisc.edu	

Block:	
 10.0.0.1	
 to	
 10.0.0.4	

Modify:	
 From:10.0.0.1	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SrcIP:10.0.0.2	

Modify:	
 To:	
 10.0.0.3	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DstIP:	
 10.0.0.4	

Allow:	
 10.0.0.2	
 to	
 10.0.0.3	

Solution: Bad Multi-app Interaction	

•  Using Off developer 2 can	

– collect network traces (T1)	

– prototype routing app using fs-sdn	

– collect traces again (T2)	

– runs diff reports (T1 and T2)	

•  Rule set conflicts are found	

– Change and iterate	

– Verify firewall invariants	

rkrish@cs.wisc.edu	

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45 50 55

B
y
t
e
s

P
r
o
c
e
s
s
e
d

(
K
B
)

Time (s)

Conclusion	

•  OFf – a debugging and test environment for
SDN developers	

•  OFf is simple, flexible, and light-weight	

•  We demonstrate OFf using three scenarios	

rkrish@cs.wisc.edu	

Thank you!	

rkrish@cs.wisc.edu	

Source Code	

https://github.com/52-41-4d/fs-master	

Questions?	

Backup Slides	

rkrish@cs.wisc.edu	

Unexpected Rule Expiration	

rkrish@cs.wisc.edu	

10.0.0.0/8	

10.5.0.0/16	

t=30	

Solution: Unexpected Rule Expiration	

•  Using OFf	

– prototype using fs-sdn and replay trace	

–  trace flow and rules	

•  wrong rule triggered	

– Change the timeout behavior	

– Verify using diff reports 	

rkrish@cs.wisc.edu	

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 5 10 15 20 25 30 35 40 45 50 55

B
y
t
e
s

P
r
o
c
e
s
s
e
d

(
K
B
)

Time (s)

