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Outline

* Overview
— Background, objectives and challenges

 The publisher perspective
— m.Labs & PPV nets

 The user perspective
— Ad Uprising & adscape
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Objectives

* Investigate behavior and characteristics of
the ad eco-system

— Develop techniques for measuring aspects of the
online ad eco-system

— Compile diverse data repositories

 Develop new mechanisms that improve
performance, yield, security and privacy
— Many opportunities!

« Commercial impact
— But it’s a cluttered space!
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Publisher revenue deletions

Invalid traffic includes both clicks and
impressions that Google suspects to not be
the result of genuine user interest

« Standard means for valid traffic - AdWords

 Google simply notifies publishers that invalid
traffic led to $XX deduction from you
account
— Large internal group that monitors traffic quality

 m.Labs — Web user & traffic quality analytics
— ldentify invalid impressions and clicks in real time

pb@cs.wisc.edu 4



Traffic generation

* Type “purchase web traffic” in Google
— MANY traffic generation offerings

Simple threats: script-based page retrieval
— Ubiquitous - $12/10K impressions

 More complex threats: botnets
— Geotargeting, clicks, and other characteristics
— As much as $100/10K impressions
 Pay-per-view networks

— Websites that load 3rd party pages in an
obfuscated fashion when accessed by users

pb@cs.wisc.edu



Honeypot websites

« Series of websites
developed to be
targets for traffic
generation
— Look and feel of a

“real” site
* Instrumentation

— Gather as much data

per access as
possible

Finding cures Saving children. St. Jude Childrens
Research Hospital

Click now to help

Raptors rookie Ross new slam dunk champ

Toronto rookie Terrence Ross beat defending champion Jeremy Evans to win the slam-dunk
contest during All-Star Saturday night.

Lakers honor late Buss with moving tribute

Kobe Bryant once told Dr. Jerry Buss that he wanted the Los Angeles Lakers owner to be
announced at center court so Buss could receive the recognition from the fans he deserved.
Reports: Kings trade away No. 5 pick Robinson

After selecting Thomas Robinson with the No. 5 overall pick in the 2012 draft, the
Sacramento Kings already have him on the move, according to reports.

Harden drops 46 as Rockets rally amid deals

James Harden scored a career-high 46 points and Jeremy Lin added 29 as the Houston

Rockets mounted a furious fourth-quarter comeback for a 122-119 victory over the
Oklahoma City Thunder on Wednesday night.
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Deep dive into PPV nets

 When a user accesses a site running a PPV
tag a pop-under window is generated
— Typically requires a user action

 Pop-under calls PPV network server
— Delivers details on user and site

* PPV network will deliver URL'’s of sites
buying traffic
— Often to 0 height frames

— Frequent reloads

K. Springborn and P. Barford, “Impression Fraud in On-line Advertising via
Pay-Per-View Networks” To appear in the USENIX Security Symposium, 2013
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Scope and impact of PPV nets

Many PPV sites publish their volume

— Average of 17.16M unique visitors and 6.29B page
views per provider per day are claimed

We searched Jan-June ‘12 Common Crawl DB for
PPV tags from 10 providers

— Over 4M PPV tags found on over 11K domains
We used MuStats to estimate daily page views on
identified pages

— Over 168M daily page views

Over $15M/month in wasted ad spend from 10 PPV
networks alone!
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Reset: the user perspective

 Research question: what display ads are
being delivered to users?

« Targeting problem: select an ad to deliver to
a user accessing a particular web page
— Objectives: build awareness, click through
— Context, geography, placement, behavior, etc.
— Targeting mechanisms are intrinsic to online ad
eco-system

« AdUprising — Identifying the Internet Adscape

— What is being shown where and to whom?
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Challenges in Adscape identification

 Scope — millions of publisher sites

« Complexities of ad campaigns

— Demo, geo, site lists, caps, etc.
Complexities of publisher ad placements
— Premium, exchanges, backfill, etc.

« Complexities of ad delivery and targeting

mechanisms
— This is what we’re seeking to understand

pb@cs.wisc.edu 11




Building a display ad crawler

 We seek to understand ad delivery by
harvesting ads from a broad set of sites

* Ad crawler requirements
— Distinguish and collect ads from other images
— Collect related data

— Accommodate gigantic scale and highly dynamic
nature of ads in a gentle fashion

— Personalization

 We developed a scalable, profile-based ad
crawler based on Firefox/firefly

pb@cs.wisc.edu 12




Building user profiles

We assume profiles can be built based on
browsing careful selection of sites
— Assume single interest users

Site selection is base on Alexa categories

Profiles are created by browsing top 100
websites from an Alexa category

— Profiles are basis for ad collection

Profile maintenance is a challenge when
gathering ads from different sites

— We find that profiles change significantly

pb@cs.wisc.edu
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Collecting ads

* Objective: gather as many distinct ads as
possible

Simplifications

— Single collection site (no geo diversity)

— No consideration of time varying effects

— Limited crawl to fixed period and fixed sites
134 sites crawled using 60 different profiles
— 462 [website, profile] pairs

Over 175K unique ads gathered from ~3.5K
entities

pb@cs.wisc.edu 14




Ad targeting
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by category

impressions
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—Sports
—News

(accurate to hour)

—Arts (TV&Video) —Computers

—Shopping

Time
—Business
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Profiles vs. ad categories

Kids_and
Arts |Business Computers|/Games Health Home | Teens |[News [Recreation Reference |Science Shopping Society [Sports
Arts 0.098 | 0.037| 0.031| 0.016 0.048(0.026 0.022 0.038 0.000 0.187 0.029 0.030
Business 0.145 0.015/ 0.018| 0.011 0.024({0.044 0.015 0.083 0.038 0.036
Computers 0.021| 0.012| 0.008 0.031/0.007 0.012 0.030 0.025| 0.022
Health 0.020| 0.083| 0.014 0.017/0.033 0.027 0.065/ 0.025
Home 0.002| 0.011 0.030 0.003(0.017 0.034 0.032] 0.019

News 0.014| 0.038 0.008 0.003/0.050 0.037 0.060/ 0.002 0.116/ 0.037| 0.056

Recreation 0.006| 0.014| 0.012 0.005{0.037 0.086 0.039| 0.001 0.039, 0.070
Reference 0.009| 0.021) 0.024 0.007/0.007 0.030 0.002 0.102| 0.003
Shopping 0.004, 0.012| 0.005 0.004/0.012 0.013 0.036/ 0.000 0.021] 0.015
Sports 0.001] 0.025| 0.012 0.012/0.017 0.032 0.108 0.001 0.029| 0.063

Alexa profiles in rows, ad categories in columns, percentage of ads shown in cells

Barford et al. “Adscape: Harvesting and Analyzing Online Display Ads” Under
submission to ACM IMC, 2013.
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Summary and status

Fraud is a gigantic problem in online advertising

— From simple scripts to sophisticated bots to PPV
networks

m.Labs has developed filters to identify fraud
m.Labs open experimental platform
— Data repository and API for ad fraud detection

The Internet Adscape is huge and diverse
Initial study to characterize the Adscape
Ad Uprising: ongoing data collection and analysis
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Thank you!

Igor Canadi

Darja Krushevskaja
Qiang Ma

Muthu

Kevin Springborn
Charles Thomas
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