
On the Practical 
Exploitability of Dual EC in 

TLS Implementations
Stephen Checkoway

1
, Matt Fredrikson

2
, Ruben Niederhagen

3
, Adam Everspaugh

2
 

Matt Green
1
, Tanja Lange

3
, Tom Ristenpart

2
, Dan Bernstein

3,4
, Jake Maskiewicz

5
, !

Hovav Schacham
5

Johns Hopkins1, University of Wisconsin2, TU Eindhoven3, University of Illinois — Chicago4, UCSD5



“…[Dual EC] contains a weakness that can only be 
seen as a backdoor.” — Bruce Schneier, 2007



Randomness and Bits
• Dual EC DRBG is a deterministic random bit generator 

included in NIST SP 800-90 until April 2014!
!

• A DRBG turns a small random string (a seed) into a 
large (approximately) random one

keyboard timings }mouse events
disk interrupts 

seed0

Generate

seed1

…

block0

Generate

seed2

block1

Generate

block2 Output

Internal State



Dual EC — A Provably Secure DRBG*

• Dual Elliptic Curve DRBG relies on two points on an elliptic 
curve (P and Q) 

• Based on “elliptic curve discrete logarithm problem”: given P 
and Q, find a such that Q = aP

DualEC ↦ (

Random Data Seed for next time

• But if I can choose P, Q, then I can design F:

F(block) ↦ seed

Runs in ~215

*Not actually true

Shumow & 
Ferguson, 2007



Dual EC — A Provably Secure DRBG*

• Dual Elliptic Curve DRBG relies on two points on an elliptic 
curve (P and Q) 

• Relies on “elliptic curve discrete logarithm problem”: given P 
and Q, find a such that Q = aP

F ↦ [(

Random Data Seed for next time

• But if I can choose P, Q, then I can design G:

G(P, Q, block) ↦ seed

Runs in ~215

*Not actually true

The question driving the controversy is: 
did someone choose P and Q so that they 

could design F?



Why is this a problem?

DualEC ↦ [server random

DualEC ↦ [

F(server random) ↦ seed

Client Server

Generate

client random

Generate

session ID,

server random,

a,

signature nonce

c

l

i

e

n

t

r

a

n

d

o

m

Generate b

s

e

r

v

e

r

r

a

n

d

o

m

,

s

e

s

s

i

o

n

I

D

,

c

e

r

t

(

p

k

)

,

a

P

,

s

i

g

b

P

,

F

i

n

i

s

h

e

d

F

i

n

i

s

h

e

d

Master Secret = PRF(x(abP ), “master secret”, client k server random)

Attacker and Server 
do the same thing



Maybe not?

• In reality, the server 
might… 

• Not release enough Dual EC 
output (we need 30 bytes) 

• Mix other entropy into Dual EC 
• Re-seed often 
• Share state with other 

sessions 
• Implement the spec wrong

Client Server

Generate

client random

Generate

session ID,

server random,

a,

signature nonce

c

l

i

e

n

t

r

a

n

d

o

m

Generate b

s

e

r

v

e

r

r

a

n

d

o

m

,

s

e

s

s

i

o

n

I

D

,

c

e

r

t

(

p

k

)

,

a

P

,

s

i

g

b

P

,

F

i

n

i

s

h

e

d

F

i

n

i

s

h

e

d

Master Secret = PRF(x(abP ), “master secret”, client k server random)

This is only 28 
bytes!



Testing Practical Exploitability
• We tested RSA’s BSAFE, Microsoft’s SChannel, 

OpenSSL-FIPS 

• Focused on server, ECDHE cipher suites 

• We assume the attacker has F, sees network traffic 

• Modified each implementation to use P, Q such that we 
know F 

• Significant amount of reverse-engineering on 
SChannel and BSAFE



Results: OpenSSL
• We found: OpenSSL is impossible to exploit!



Results: OpenSSL
• Uses Dual EC to generate a 32-byte session ID 

• …but it also uses 20—45 bits of other entropy per call 

• time secs‖time μsecs‖counter‖PID 

• Complexity depends on guessability of counter, 
PID 

• If we know (time secs, counter, PID), attack runs in 
1.2 seconds



Results: SChannel
• Only sends 28 bytes of Dual 

EC output 

• Does not use additional 
entropy or re-seed 

• Also has an implementation 
flaw 
• …that happens to make the 

attack slightly faster 

• Leveraging attack on future 
sessions more difficult 

• Attack possible in ~63 minutes

Dual EC Dual EC

Dual EC Dual EC

lsass.exe

IISIIS IIS

Each of these 
has a different 

state



Results: BSAFE
• Dual EC is the default RNG! 

• Does not use additional 
entropy or re-seed often 

• BSAFE-C caches unused 
outputs 

• Releases variable amounts of 
output: 

• 31-60 bytes for BSAFE-C 

• 28 bytes for BSAFE-Java

BSAFE-C 2.4 seconds

BSAFE-Java 64 minutes

Good enough for 
massive 

surveillance

Fine for targeted 
sessions



Conclusions
• Dual EC might contain a backdoor 

• Need concrete evidence that 
someone knows F!

• If it does, they should hire better 
hackers 

• Fragile to low-level implementation 
choices 

• Only works for certain types of 
protocols 

• Design was suspicious from the 
start 

• Read the full paper at dualec.org

http://dualec.org

