

Reducing Memory Virtualization Overheads in Virtualized Datacenters

Jayneel Gandhi, Arkaprava Basu, Michael M. Swift, Mark D. Hill

Executive Summary

- Problem: TLB misses in virtual machines
 - Hardware-virtualized MMU has high overheads
 - ➤ Up to 280% overhead
- Prior Work: Direct Segments unvirtualized case
- Solution: segmentation to bypass paging
 - Extend Direct Segments for virtualization
 - Three configurations with different tradeoffs
- Results
 - Near- or better-than-native performance

Outline

- Motivation
- Review: Direct Segments
- Virtualized Direct Segments
- Optimizations
- Evaluation
 - Methodology
 - Results
- Summary

Overheads of Virtualizing Memory

We show that that the increase in translation lookaside buffer (TLB) miss-handling costs due to hard-ware-assisted memory management unit (MMU) is the largest contributor to the performance gap between native and virtual servers.

-Buell, et al. VMware Technical Journal 2013

Unvirtualized x86 translation

Two-levels of translation

Base Virtualized

Support for Virtualizing Memory

Applications

Database Graph-analytics Key-value store

Outline

- Motivation
- Review: Direct Segments
- Virtualized Direct Segments
- Optimizations
- Evaluation
 - Methodology
 - Results
- Summary

Unvirtualized Direct Segments

Why Direct Segment?

- Matches big memory workload needs
- NO TLB lookups => NO TLB Misses

Translation with Direct Segments

Translation with Direct Segments

Direct Segments

Outline

- Motivation
- Review: Direct Segments
- Virtualized Direct Segments
- Evaluation
 - Methodology
 - Results
- Summary

Modes

BANGS Directzed

Base Virtualized: Translation

Dual Direct: Translation

VMM Direct: Translation

Guest Direct: Translation

Tradeoffs: Efficiency

Properties	Base	Dual	VMM	Guest
	Virtualized	Direct	Direct	Direct
Dimension of page walk	2D	0D	1D	1D
# of mem. accesses for most page walks	24	0	4	4
# of base-bound computation for page walks	0	1	5	1

Tradeoffs: Compatibility

Properties	Base Virtualized	Dual Direct	VMM Direct	Guest Direct
Guest OS	X	√	X	√
modifications				
VMM	X	\checkmark	\checkmark	minimal
modifications				
Application	Any	Big-	Any	Big-
Category		memory		memory

Tradeoffs: Memory Overcommit

Properties	Base	Dual	VMM	Guest
	Virtualized	Direct	Direct	Direct
Page Sharing	\checkmark	limited	limited	\checkmark
Ballooning	\checkmark	limited	\checkmark	limited
Guest OS Swapping	\checkmark	limited	\checkmark	limited
VMM Swapping	\checkmark	limited	limited	\checkmark

Outline

- Motivation
- Review: Direct Segments
- Virtualized Direct Segments
- Optimizations
- Evaluation
 - Methodology
 - Results
- Summary

Optimizations

- Issue 1: Guest/Host memory fragmentation
 - Guest physical memory: <u>Self-ballooning</u>
 - Host physical memory: Compaction
- Issue 2: Permanent "hard" memory faults
 - Escape filter to provide alternate translation
 - Bloom filter stores small number of faulty pages
 - Filter checked in parallel with segment registers

For more details: Come to the poster

Outline

- Motivation
- Review: Direct Segments
- Virtualized Direct Segments
- Optimizations
- Evaluation
 - Methodology
 - Results
- Summary

Methodology

- Estimate performance of future hardware
 - Measure fraction of TLB misses to segmented memory
 - Measure TLB miss cost with performance counters
 - Estimate performance gain with linear model
- Prototype
 - Linux v3.12.13 host/guest
 - Qemu-KVM hypervisor
- Intel 12-core Sandy-bridge with 96GB memory

Summary

- Problem: TLB misses in virtual machines
 - Hardware-virtualized MMU has high overheads
 - ➤ Up to 280% overhead
- Prior Work: Direct Segments unvirtualized case
- Solution: segmentation to bypass paging
 - Extend Direct Segments for virtualization
 - Three configurations with different tradeoffs
- Results
 - Near- or better-than-native performance

Questions?

For more details: Come to the poster