
VeriCon: Towards Verifying
Controller Programs in SDNs

Thomas Ball, Nikolaj Bjorner, Aaron Gember,
Shachar Itzhaky, Aleksandr Karbyshev, Mooly Sagiv,

Michael Schapira, Asaf Valadarsky

1

• Network should always satisfy some invariants

• Difficult to write an SDN application
that always guarantees such invariants

Guaranteeing network invariants

2

Limitations of existing approaches

1. Establish existence, but not absence, of bugs

– NICE (finite-state model checking): unexplored
topologies may cause bugs to be missed

– HSA (check network snapshots): snapshots may
not capture situations in which bugs exist

2. Runtime overhead

– VeriFlow & NetPlumber (check in real-time):
bugs only identified when app is actually running

3

VeriCon

Verifies network-wide invariants for any event
sequence and all admissible topologies

4

SDN application
in Core SDN

Topology
constraints &
invariants in

first order logic

Guarantee
invariants

are satisfied

Concrete
counter-
example

Verify conditions
using the Z3

theorem prover

+
OR

Example: stateful firewall

• Always forward from
trusted to untrusted hosts

• Only forward from
untrusted to trusted hosts
if a trusted host previously
sent a packet to the
untrusted host

Trusted Hosts

Untrusted Hosts

1

2

5

Core SDN (CSDN) language

• Define and initialize relations

– Topology: link (S, O, H) link(S1, I1, I2, S2)

– Forwarding: S.ft(Src → Dst, I → O)
 S.sent(Src → Dst, I → O)

• Write event handlers: pktIn(S, Pkt, I)

– Update relation

– Install rule (insert into ft)

– Forward packet (insert into sent)

– If-then-else

6

Stateful firewall in CSDN

rel tr(SW, HO) = {}

pktIn(s, pkt, prt(1)) →

 s.forward(pkt, prt(1), prt(2))

 tr.insert(s, pkt.dst)

 s.install(pkt.src → pkt.dst, prt(1), prt(2))

pktIn(s, pkt, prt(2)) →

 if tr(s, pkt.src) then

 s.forward(pkt, prt(2), prt(1))

 s.install(pkt.src→pkt.dst, prt(2), prt(1))

1

2

7

Invariants

• Topology: define
admissible topologies

• Safety: define the
required consistency of
network-wide states

• Transition: define the effect
of executing event handlers

8

assumed to hold initially

checked initially &
after each event

• Topology: At least one switch with two ports,
prt(1) & prt(2); a packet P is forwarded from
an untrusted host U to a trusted host T

• Safety: For every packet sent from a host U to a
host T there exists a packet sent to T’ from U

Stateful firewall invariants

9

))1(),2(,(...
)),1(,()),2(,(

.:,:,:,

prtprtPsentSTdstPUsrcP
TprtSlinkUprtSlink

PKPSWSHOTU






))2(),1(,'(..'..:'

))1(),2(,(.
1 prtprtPsentSsrcPdstPPKP

prtprtPsentS
I






Counterexample

I1 is not inductive—not all executions starting
from an arbitrary state satisfy the invariant

10

in out

HO:0

prt(3)

prt(2)

prt(1)

prt(0)

SW:0

s

flow-table

HO:0 HO:0

Src Dst In Out

* *
pkt.src

pkt.dst

Additional firewall invariants

• Flow table entries only contain
forwarding rules from trusted hosts

• Controller relation tr records the correct hosts

• I1 ˄ I2 ˄ I3 is inductive

11

))2(),1(,'(.'..:'

))1(),2(,(.
2 prtprtPsentSSrcdstPPKP

prtprtDstSrcftS
I






))2(),1(,(...:

),(
3 prtprtPsentSHdstPPKP

HStr
I






Non-buggy verification examples

Program LOCs Topo
Inv.

Safety +
Trans Inv.

Time
(sec)

Firewall 8 1 3 + 0 0.12

Stateless Firewall 4 1 2 + 0 0.06

Firewall + Host Migration 9 0 3 + 0 0.16

Learning Switch 8 1 4 + 2 0.16

Learning Switch + Auth 15 2 5 + 3 0.21

Resonance (simplified) 93 6 5 + 2 0.21

Stratos (simplified) 29 12 3 + 0 0.09

12

Buggy verification examples

Benchmark Counterex
Host + Sw

Auth: Rules for unauth host not removed 3 + 2

Firewall: Forgot part of consistency inv 5 + 3

Firewall: No check if host is trusted 6 + 4

Firewall: No inv defining trusted host 6 + 4

Learning: Packets not forwarded 1 + 1

Resonance: No inv for host to have one state 11 + 4

StatelessFW: Rule allowing all port 2 traffic 4 + 2

13

Future work

• Assume events are executed atomically

– Enforceable using barriers, with performance hit

– Consider out-of-order rule installs

• Rule timeouts

– App handles timeout events to update
its ft relation and check invariants

– Need to reason about event ordering

14

Summary of VeriCon

• Verifies network-wide invariants for any event
sequence and all admissible topologies

• Guarantees invariants are satisfied, or
provides a concrete counterexample

• Application with 93 LOC and
13 invariants is verified in 0.21s

 http://agember.com/go/vericon

15

