VeriCon: Towards Verifying

Controller Programs in SDNs

Microsoft: @

Research wisconsiy

TELAUIUUNIVERSITY tinms,

alem @ 0y
S 005>
o L0
S/ 2,
S/ 2
ﬂb ' %
2
=y 2
21 o
3 S
S

TECHNISCHE
UNIVERSITAT
MUNCHEN

Guaranteeing network invariants

* Network should always satisfy some invariants

* Difficult to write an SDN application
that always guarantees such invariants

Limitations of existing approaches

1. Establish existence, but not absence, of bugs

— NICE (finite-state model checking): unexplored
topologies may cause bugs to be missed

— HSA (check network snapshots): snapshots may
not capture situations in which bugs exist

2. Runtime overhead

— VeriFlow & NetPlumber (check in real-time):
bugs only identified when app is actually running

VeriCon

Verifies network-wide invariants for any event
sequence and all admissible topologies

SDN application
in Core SDN

-+

Guarantee

invariants

Verify conditions _J are satisfied
using the Z3

»

Topology
constraints &

theorem prover Concrete

counter-
example

invariants in
first order logic

Example: stateful firewall

Trusted Hosts * Always forward from
trusted to untrusted hosts

* Only forward from
untrusted to trusted hosts
if a trusted host previously
sent a packet to the
untrusted host

Untrusted Hosts

Core SDN (CSDN) language

* Define and initialize relations
— Topology: link (S, O, H) link(S, 1, 15, S,)
— Forwarding: S.ft(Src — Dst, | — O)
S.sent(Src — Dst, | — O)
* Write event handlers: pktIn(S, Pkt, 1)
— Update relation
— Install rule (insert into ft)
— Forward packet (insert into sent)
— If-then-else

Stateful firewall in CSDN

rel tr(SW, HO) = {}
pktin(s, pkt, prt(1)) —
s.forward(pkt, prt(1), prt(2))
tr.insert(s, pkt.dst)
s.install(pkt.src — pkt.dst, prt(1), prt(2))
pktin(s, pkt, prt(2)) —
If tr(s, pkt.src) then
s.forward(pkt, prt(2), prt(1))
s.install(pkt.src—pkt.dst, prt(2), prt(1))

Invariants

* Topology: define o
. : assumed to hold initially
admissible topologies

\

e Safety: define the
required consistency of

network-wide states , checked initially &

- . after each event
 Transition: define the effect

of executing event handlers)

Stateful firewall invariants

* Topology: At least one switch with two ports,

prt(1) & prt(2); a packet P is forwarded from
an untrusted host U to a trusted host T

iU, T :HO,S:SW, P: PK.
link (S, prt(2),U) Alink (S, prt(1),T) A
Psrc=U AP.dst=T A S.sent(P, prt(2), prt(1))

e Safety: For every packet sent from a host U to a
host T there exists a packet sent to 7”° from U

| — S.sent(P, prt(2), prt(1)) =
1 3P PK.P'dst=P.srcaS.sent(P', prt(1), prt(2))

Counterexample

flow-table
Dst In

HO:0| = | *

|, is not inductive—not all executions starting
from an arbitrary state satisfy the invariant

10

Additional firewall invariants

* Flow table entries only contain
forwarding rules from trusted hosts

[, _ S.ft(Src — Dst, prt(2), prt()) = }

dP': PK.P'.dst = Src A S.sent(P', prt(1), prt(2))

e Controller relation tr records the correct

NOStS

- tr(S,H)= \
*~ 3P:PK.P.dst=H ASsent(P, prt(t), prt(2))

* |, AL, Alyisinductive

Non-buggy verification examples

Firewall

Stateless Firewall
Firewall + Host Migration
Learning Switch

Learning Switch + Auth
Resonance (simplified)

Stratos (simplified)

12

Buggy verification examples

Benchmark Counterex
Host + Sw

Auth: Rules for unauth host not removed 3+2
Firewall: Forgot part of consistency inv 5+3
Firewall: No check if host is trusted 6+4
Firewall: No inv defining trusted host 6+4
Learning: Packets not forwarded 1+1

Resonance: No inv for host to have one state 11+ 4

StatelessFW: Rule allowing all port 2 traffic 4+ 2

13

Future work

* Assume events are executed atomically
— Enforceable using barriers, with performance hit
— Consider out-of-order rule installs

e Rule timeouts

— App handles timeout events to update
its ft relation and check invariants

— Need to reason about event ordering

Summary of VeriCon

* Verifies network-wide invariants for any event
sequence and all admissible topologies

e Guarantees invariants are satisfied, or
provides a concrete counterexample

DR

* Application with 93 LOC and
13 invariants is verified in 0.21s

http://agember.com/go/vericon [u]

