
FiE on Firmware
Finding Vulnerabilities in Embedded Systems

using Symbolic Execution

Drew Davidson
Ben Moench
Somesh Jha

Thomas Ristenpart

1

• Symbolic execution tailored to
embedded firmware
– Detects common firmware

vulnerabilities
– Deals with domain-specific

challenges
– Able to verify small programs

• Tested on 99 programs
– Found 22 bugs
– Verified memory safety for 52

programs

FiE in a Nutshell

2

[Frisby et al., 2012]

Command

Secret Key

Example Attack: WOOT 2012

3

Encrypted card data

16-bit low power device
C firmware
Low-level hardware interaction

Buffer
Overflow!

Embedded Systems: Lots of Attacks

4
… Little Work on Detecting Vulnerabilities

Source code analysis is
helpful on desktop

Could be transitioned to

firmware

• Represents program
input as sets of
constraints

• Explores multiple feasible
paths for bugs

• Provide detailed trace to
vulnerability

• KLEE
– Popular, mature tool
– Average > 90% line

coverage
– Finds memory safety

violations

Symbolic Execution

5

KLEE

LLVM bitcode

C source code

Clang

Error trace

X ≠ 0

X > 0 X < 0

X ≠ 0

X < 0

• Why MSP430?
– Popular, widely deployed
– Security applications
– Has clang support

• KLEE ported to 16-bit
• Evaluated 99 programs

– 12 TI Community
– 78 Github
– 8 USB protocol stack
– 1 Synthetic (cardreader)

• Average instruction
coverage for MSP430 < 6%
– Most programs < 1%

KLEE: Performance on MSP430

6

KLEE

LLVM bitcode

C source code

Clang

Error trace

16-bit KLEE

Clang
(MSP430)

Firmware
source code (C)

> 400 variants of MSP430

Challenges of MSP430 Code

7

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Challenge #3
Interrupt-

driven
programs

Challenge #2
Peripheral
semantics

Challenge #1
Architecture

Diversity while (true){

 if (P1IN)

 len = P1IN;

 _BIS_SR(GIE);

 if (! P1IN)

 strncpy(dst,src,len);

}

 PORT_2_ISR

P1DIR = 0x0;

- Peripheral access with I/O Ports
- Environment interaction via

implicit memory mapping

value?

FiE on Firmware

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

• Handles over 400
variants of the MSP430

• Bugfinding

– Memory safety (21)

– Peripheral misuse (1)

• Verification (53/99)

• Customizable

Challenge #3
Interrupt-

driven
programs

Challenge #1
Architecture

Diversity
Challenge #2

Peripheral
semantics

verification

FiE on Memory

9

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Chip Layout Table

addr P1IN 0x20 1

Memory Library

P1IN_READ:

 ???

∂1

∂3

P1IN_READ:
fresh_symbolic()

Assume adversary controls peripherals
Allow users to supply custom libraries

∂2

Challenges and Opportunities

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

• Verification

– Outside scope of
traditional symbolic
execution
• State space intractable

• Key Insight

– Firmware state space
much smaller

Modular
architecture

verification

FiE on Verification

11

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Infinite program paths
Analysis stuck executing already-seen states
Prevents verification

FiE on Verification

• Log all execution states

• Pruning
– Detect redundant states and

terminate them

– Redundant states; redundant
successors

• Smudging
– replace frequently-changing

concrete memory with symbolic

– Complete
• May have FPs

More details in the paper

FiE on Firmware

Optimized
Symbolic

Execution Engine

Chip Layout Spec

Memory Spec

Interrupt Spec

Challenge #3
Interrupt-

driven
programs

Challenge #1
Architecture

Diversity

verification

Challenge #2
Peripheral
semantics

Evaluation

• Amazon EC2
– Automated tests

(scripts available)

– 50 minute runs

• Test Versions:
– 16-bit KLEE

• baseline

– FiE
• Symbolic + plugin

– FiE + pruning

– FiE + pruning + smudging

14

Corpus:
12 TI Community
1 Synthetic (cardreader)
8 USB protocol stack
78 Github

• 22 bugs across the
corpus (smudge)

– Verified manually

– 21 found in the
MSP430 USB
protocol stack

– 1 misuse of flash
memory

• Emailed developers

Bugfinding Results

15

Coverage Results

16

Mode
Average %
Coverage

False
Positives

Verified

Baseline 5.9 92 0

Symbolic 71.1 0 7

Prune 74.4 0 35

Smudge 79.4 1 53

Thanks

Summary
 Initiated work for MSP430 automated
 bugfinding

 Modular, conservative symbolic execution

 Supported verification and bugfinding

Download FiE
 www.cs.wisc.edu/~davidson/fie

Thanks!

17

http://www.cs.wisc.edu/~davidson/fie

