

OpenNF: Enabling Innovation in Network Function Control

Aditya Akella

With: Aaron Gember, Raajay Vishwanathan, Chaithan Prakash, Sourav Das, Robert Grandl, and Junaid Khalid

Network functions, or Middleboxes

Introduce custom packet processing functions into the network

State-of-the-art

 Network functions virtualization (NFV)

 Software-defined networking (SDN)

Distributed processing

Dynamic reallocation to coordinate processing across instances

Extract maximal performance at a given \$\$

Distributed processing

Dynamic reallocation to coordinate processing across instances

What's missing today?

The ability to **simultaneously**

Meet tight SLAs

 E.g., time outdated NFs are used to process (long) flows is less than 3 seconds

Ensure safe reallocation

 E.g., IDS raises alerts for all HTTP flows containing known malware packages

Keep costs low

E.g., shut down idle resources when not needed

Why? SDN example

Not moving flows → bottleneck persists

→ Responsiveness!

Naively move flows → associated state??

→ Output equiv.!

→ incorrect behavior

Need joint control over forwarding and NF state

OpenNF

Overview and challenges

- OpenNF
 - Requirements
 - Key ideas
 - Applications

Evaluation

OpenNF

Support key semantics in distributed processing:

safe reallocation of processing at any time

Output equivalence

1. Detailed understanding of state

2. Staged updates for safe live state migration

3. App knobs to control overhead vs. performance

Any relloc.

policy enforced

any time,

finishes "soon"

Key Challenges

1: Many NFs, minimal changes

 Undesirable to force NFs to conform to certain state structures or allocation/access strategies

2: Reigning in race conditions

- Packets may arrive while state is being moved
 - → updates *lost* or *re-ordered*; state *inconsistency*

3: Bounding overhead

- State operations at different granularities
- Flexibility in choosing guarantees

NF state taxonomy

State created or updated by an NF applies to either a single flow or a collection of flows

Classify state based on scope

Flow provides a natural way for reasoning about which state to move, copy, or share

API to export/import state

Three simple functions: get, put, delete(f)

- Version for each scope (per-, multi-, all-flows)
- Filter f defined over packet header fields

NFs responsible for

- Identifying and providing all state matching a filter
- Combining provided state with existing state

No need to expose internal state organization No changes to conform to a specific allocation strategy

Operations

"Reallocate port 80 to NF2"

move flow-specific NF state at various granularities

Copy and combine, or **share**, NF state pertaining to multiple flows

Semantics for move (loss-free, order-preserving), copy/share (various notions of consistency)

Move

C2: Race conditions

Lost updates during move

Loss-free: All state updates due to packet processing should be reflected in the transferred state, and all packets the switch receives should be processed

R1

Key idea: Event abstraction to prevent, observe and sequence state updates

17

Loss-free move using events

Stop processing; buffer at controller

- 1. enableEvents(blue,drop) on Inst₁;
- 2. get/delete on Inst₁

3. Buffer events at controller

4. put on Inst₂

5. Flush packets in events to Inst₂

6. Update forwarding

Re-ordering of updates

Order-preserving: All packets should be processed in the order they were forwarded to the NF instances by the switch

Two-stage update to track last packet at NF1

Order-preserving move

Track last packet; sequence updates

Flush packets in events to Inst, w/ "do not buffer"

enableEvents(blue,buffer) on Inst₂

Forwarding update: send to Inst₁ & controller

C3: Applications

Bounded Overhead

Apps decide

granularity of reallocation operations

move, copy or share

filter, scope

guarantees desired

move: no-guarantee, loss-free, loss-free +

order-preserving

copy: no or eventual consistency

share: strong or strict consistency

Example app: Load-balanced network monitoring

C3: Applications

Implementation

OpenNF Controller (≈5.3K lines of Java)

Written atop Floodlight

Shared NF library (≈3K lines of C)

Modified NFs (3-8% increase in code)

- Bro (intrusion detection)
- PRADS (service/asset detection)
- iptables (firewall and NAT)
- Squid (caching proxy)

Microbenchmarks: NFs

Serialization/deserialization costs dominate

Cost grows with state complexity

Microbenchmarks: Operations

State: 500 flows in PRADS; Worload: 1000 pkts/s; 50% util

Move: all flows w/ per-flow state

D = f(load,state,speed)

Copy (MF state) – 176ms

Share (strong) – 7ms *per* pkt

Guarantees come at a cost!

Impl & Eval

Macrobenchmarks: End-to-end benefits

Load balanced monitoring with Bro IDS

- Load: replay cloud trace at 10K pkts/sec
- At 180 sec: move HTTP flows (489) to new Bro
- At 360 sec: move HTTP flows back to old Bro

OpenNF scaleup: 260ms to move (optimized, loss-free)

Log entries equivalent to using a single instance

VM replication: 3889 incorrect log entries

Cannot support scale-down

Forwarding control only: scale down delayed by more than 1500 seconds

Wrap Up!

- OpenNF enables rich control of the packet processing happening across instances of an NF
- Key safety guarantees, efficient, overhead control, minimal NF modifications

http://opennf.cs.wisc.edu

Relation w/ SDN (research)

SDN: control over router/switch state

OpenNF: control over NF state

SDN: controller can "compute" then write state; knows how state is being used

OpenNF: limited to "handling" state

SDN (purist): dumb network elements w/o control plane

OpenNF: "not so pure"; NF-internal "control" plane??

SDN: consistency semantics an afterthought

OpenNF: semantics from the ground up

Backup

Copy and share

Used when multiple instances need to access a particular piece of state

Copy – eventual consistency

Issue once, periodically, based on events, etc.

Share – strong

- All packets reaching NF instances trigger an event
- Packets in events are released one at a time
- State is copied between packets

C3: Applications

Example app: Selectively invoking advanced remote processing

Existing approaches

- Control over routing (PLayer, SIMPLE, Stratos)
 - Virtual machine replication
 - Unneeded state => incorrect actions
 - Cannot combine => limited rebalancing
- Split/Merge and Pico/Replication
 - Address specific problems => limited suitability
 - Require NFs to create/access state in specific ways => significant NF changes

Controller performance

Improve scalability with P2P state transfers

Impl & Eval

Macrobenchmarks: Benefits of Granular Control

Two clients make HTTP requests

– 40 unique URLs

Initially, both go to Squid1

20s later → reassign client 1 to Squid2

Metric	Ignore	Copy-client	Copy-all	Granularities of copy
Hits @ S1	117	117	117	от сору
Hits @ S2	crashed	39	50	
State transferred	0	4MB	54MB	