OpenNF: Enabling Innovation in
Network Function Control

Aditya Akella

With: Aaron Gember, Raajay Vishwanathan, Chaithan
Prakash, Sourav Das, Robert Grandl, and Junaid Khalid

Network functions, or Middleboxes

Introduce custom packet processing functions into the network

>100k hosts 1k-10k hosts =
\ \ 10k-100k hosts === <1k hosts ===
7N 7 O\ 10000 |
- SW
7 { A]
= o (:\\ £ 1000 | i
3 -
©
Firewall Caching Intrusion Traffic o 100 | -
Proxy Prevention scrubber £ I
Z 10} E .
1 B Il

All Middleboxes L3 Routers L2 Switches
[Sherry et al., SIGCOMM 2012]

2
WANr

Load SSL

balancer Gteway optimizer

Common in
enterprise,
cellular, ISP
networks

Stateful: detailed
book-keeping for
network flows

State-of-the-art

 Network functions
~virtualization (NFV)

' Software-defined
~ networking (SDN)

Distributed processing

Dynamic reallocation to coordinate processing across instances

Load balancing

Qs
~
NGl

ﬁ~$

lllll

MBQX' MBox

Extract maximal performance
~atagiven $S

Distributed processing

Dynamic reallocation to coordinate processing across instances

Load balancing Novel abstractions

1. Elastic

2. Always
updated

3. Dynamic

Extract maximal performance
~atagiven $S

What’s missing today?
The ability to simultaneously

Meet tight SLAs

— E.g., time outdated NFs are used to process
(long) flows is less than 3 seconds

Ensure safe reallocation

— E.g., IDS raises alerts for all HTTP flows
containing known malware packages

Keep costs low
— E.g., shut down idle resources when not needed

Why? SDN example

Elastic scaling

“r_lg\-/g-__.

\) N

Firewall Caching Intrusion Web Server
Proxy Prevention

Home
Users

Not moving flows —> bottleneck persists = Responsiveness!

Naively move flows = associated state?? - Output equiv.!
- incorrect behavior

[Need joint control over forwarding and NF state}

~* Overview and challenges

g' OpenNF

— Requirements
— Key ideas
— Applications

~ * Evaluation

Any relloc.
policy enforced

équivalence 1. Detailed understanding

of state
2. Staged updates for safe live
state migration
3. App knobs to control
overhead vs. performance

/

Overview and challenges

Reallocation OpenNF

operations

NF APIs and control plane for
jointly controlling internal NF
state and network
forwarding state

Coordination
w/ network

State import/
export

L_T_J

€ e e e e e e

-

Key Challenges

1: Many NFs, minimal changes

— Undesirable to force NFs to conform to certain
state structures or allocation/access strategies

2: Reigning in race conditions

— Packets may arrive while state is being moved
— updates lost or re-ordered; state inconsistency

3: Bounding overhead
— State operations at different granularities
— Flexibility in choosing guarantees

11

C1: Minimal NF Changes

NF state taxonomy

State created or updated by an NF applies to
either a single flow or a collection of flows

Multl -flow state

flow state TcpAnalyzer
| Connectlon HttpAnalyzer
: Connection TcpAnalyzer All-flows state

HttpAnalyzer

Classify state based on scope

Flow provides a natural way for reasoning
about which state to move, copy, or share

12

API to export/import state

Three simple functions: get, put, delete(f)

— Version for each scope (per-, multi-, all-flows)
— Filter T defined over packet header fields

NFs responsible for

— ldentifying and providing all state matching a filter
— Combining provided state with existing state

_

No need to expose internal state organization

No changes to conform to a specific allocation strategy

\

J

13

C2: Race conditions

Operations

move flow-specific NF state at
various granularities

copy and combine, or share,
NF state pertaining to multiple
flows

Semantics for move (loss-free,

order-preserving), copy/share
(various notions of consistency)

14

Control Application
SDN Controller

move (port=80,Inst,Inst, LF&OP)
’ forward(port=80,Inst,)

betPerﬂow(port=80) /{
putPerflow(ID1,Chunk1)
delPerflow(port=80) [ID1,Chunk1]
! [ID2,Chunk2] putPerflow(ID2,Chunk2)
~Inst, " Inst,

15

Lost updates during move

-

_

Loss-free: All state updates due to packet processing
should be reflected in the transferred state, and all
packets the switch receives should be processed

~

J

-

Key idea: Event abstraction to prevent, observe
and sequence state updates

~

A—d

Loss-free move using events

[Stop processing; buffer at controller]

enabletEvents(blue,drop) on Inst,;
get/delete on Inst,
. Buffer events at controller

put on Inst, /&; !‘a

. Flush packets in]
events to Inst, I Ly Inst,

6. Update
forwarding Controller

SPCSRN U SIS

>
=

Inst,

17

Re-ordering of updates

Controller Switch
5. Flush buffer

6. Issue fwd
update |

\d v

Order-preserving: All packets should be
processed in the order they were forwarded
to the NF instances by the switch

\
J

Two-stage update to track last packet at NF1 ..

Order-preserving move

[Track last packet; sequence updates]

Flush packets in events to Inst, w/ “do not buffer”
enabletEvents(blue,buffer) on Inst,

Forwarding update: send to Inst; & controller

Wait for packet from H
switch (remember last) |

P
Forwarding update: / ouf ﬁ

send to Inst, 15 -

Wait for event from
Inst, for last Inst, packet [v]

Release buffer of packets on Inst,

19

Bounded Overhead

Apps decide

granularity of reallocation operations
move, copy or share
filter, scope

guarantees desired
move: no-guarantee, loss-free, loss-free +
order-preserving
copy: no or eventual consistency
share: strong or strict consistency

Example app: Load-balanced
network monitoring

scan.bro
vulnerable.bro
weird.bro

scan.bro
movePrefix(prefix,oldInst,newInst): x//
copy(o1dInst,neWInst,{nw_src:preﬁ'x},mu1t1'2//VU'”-bro
move(oldInst,newInst, {nw_src:prefix},per,LF+0OP)
while (true): —=
sleep(60)
copy(oldinst,newInst,{nw_src:prefix},multi)

copy(newInst,oldInst,{nw_src:prefix},multi)
~

weird.bro

scan.bro

Implementation

OpenNF Controller (=5.3K lines of Java)
— Written atop Floodlight

Shared NF library (=3K lines of C)

Modified NFs (3-8% increase in code)
— Bro (intrusion detection)
— PRADS (service/asset detection)
— iptables (firewall and NAT)
— Squid (caching proxy)

22

Impl & Eval

Microbenchmarks: NFs

21000 o fows mm 2190

800 + 500 flows
600 | 1000 flows mm
400 r

200 r

= 250 flows mmm
2 129 1 500 flows
€100 L 1000 flows

putPerflow Ti

o

iptables PRA Bro

Serialization/deserialization Cost grows with
costs dominate state complexity

23

Microbenchmarks: Operations

State: 500 flows in PRADS; Worload: 1000 pkts/s; 50% util
4

Move: all flows w/ per-flow state
/P = f(load, state,speed)]
_
NG m A500 § U0 230 pkts 130 pkts
g 400 t ?4 pkt; Q g in events buff. at dstinst
N] ropped! 3 £200 |
g0 5 9 v
=200 | S 3
5 $ 5 100 t
5100 | s
0 a0
Total Average Maximum
Copy (MF state) — 176éms
Share (strong) — 7ms per pkt
[Guarantees come at a cost!]

24

Macrobenchmarks:
End-to-end benefits

Load balanced monitoring with Bro IDS
— Load: replay cloud trace at 10K pkts/sec
— At 180 sec: move HTTP flows (489) to new Bro
— At 360 sec: move HTTP flows back to old Bro

OpenNF scaleup: 260ms to move (optimized, loss-free)
— Log entries equivalent to using a single instance

VM replication: 3889 incorrect log entries
— Cannot support scale-down

Forwarding control only: scale down delayed by more
than 1500 seconds

Wrap Up!

* OpenNF enables rich control of the packet
processing happening across instances of an NF

* Key safety guarantees, efficient, overhead
control, minimal NF modifications

[=]
[=];

http://opennf.cs.wisc.edu

100

Relation w/ SDN (research)

SDN: control over router/switch state
OpenNF: control over NF state

SDN: controller can “compute” then write state; knows how
state is being used

OpenNF: limited to “handling” state

SDN (purist): dumb network elements w/o control plane
OpenNF: “not so pure”; NF-internal “control” plane??

SDN: consistency semantics an afterthought
OpenNF: semantics from the ground up

Copy and share

Used when multiple instances need to access a
particular piece of state

Copy — eventual consistency
— Issue once, periodically, based on events, etc.

Share — strong
— All packets reaching NF instances trigger an event
— Packets in events are released one at a time
— State is copied between packets

29

Example app: Selectively
invoking advanced remote processing

HTTP reg = HTTP req > Internet

. scan.bro
scan.bro i V7"
gy vulnerable.bro |
vulnerable.bro A 7 :
weirdbro i/ 19 weird.bro
detect-MHR.bro

enhanceProcessing(flowid, locInst):

move(1ocInst,c1oudInst,f1owid,per,Lil\\\\(maksmd&mm
. of HTTP reply

No need for:

(1) order-preservation
(2) copying multi-flow
state

Enterprise n/w

e Control over routing (PLayer, SIMPLE, Stratos)

*Virtual machine replication ‘
— Cannot combine => limited rebalancing &J
’%Split/l\/lerge and Pico/Replication %;

— Address specific problems => limited suitability

— Unneeded state => incorrect actions

— Require NFs to create/access state in specific
ways => significant NF changes

31

Controller performance

—~ 1400 ' 1000 chunks —e— -
£ 2000 chunks |
T 1200 ¢ 3000 chunks —# "
é 1000 | "
5 800 | e -
o 600} / 1
— . ---_-_--0-"
':: 400 il _____---—"‘)
g 200}
0 1 1 1
0 5 10 15 20

Number of simultaneous moves

Improve scalability with P2P state transfers

32

MacrObenChmarks: Impl & Eval
Benefits of Granular Control

Two clients make HTTP requests

— 40 unique URLs

Initially, both go to Squid1l

20s later = reassign client 1 to Squid2

Metric ___|ignore ___ Copplent L omrat Granularities
of copy

Hits @ S1 117
Hits @ S2 crashed 39 50
State 0 4MB 54MB

transferred

