

Rinnegan: Efficient Resource Use for Heterogeneous Processors

Sankaralingam Panneerselvam and Michael M. Swift

Challenges with Heterogeneous Architectures

Heterogeneity will be common in future architectures

Dark Silicon demands better power management

Latency-Power
Trade-off

Overused accelerators may not always accelerate

Design

Accelerator Stub

- Abstract the presence of different accelerators
- Runtime binding to accelerator devices by using information exposed by the monitor

Goals

- Adaptive Application: Runtime decisions like task placement are made by applications through information exported from OS
- Power Management: Promotes power as a first-class resource; allow tasks to run only when power is available
- Optimize for performance or power/energy efficiency

Task Profiler

- Helps in predicting task execution time or task speedup on different accelerators
- Combined with information exported through monitor, helps in choosing an accelerator

Power Agent

- Enables to set a power limit for the system
- Controls the distribution of power to each application
- Transfers power from one task to another

Accelerator Monitor

- Centralized kernel service that exports device usage information from agents to user mode
- Supports a subscription mechanism to notify applications on resource allocation events

Power Model

- Provides information on power needed by a task to execute on a device
- Maintains information on power states supported by the devices (if any)

Core

Accelerator Agent

- Implements scheduling decisions for the accelerator based on OS policy
- Exposes accelerator usage to the applications through monitor

Native Hetero-Aware Rinnegan Always-Hetero Dedup Blackscholes Pbzip

Experiment:

Heterogeneous configuration - 10 slow cores and 2 fast cores - emulated using Intel's clock-modulation feature. Applications were run together contending for the heterogeneous core (powerful cores). Performance is normalized to serial version of the application running on a powerful core.

Configurations:

- (a) *Native:* Unaware of heterogeneous cores and thus applies normal Linux scheduling policy over all the cores
- (b) Always-Hetero: Runs tasks on the powerful cores
- (c) *Hetero-Aware:* Modifies Linux scheduler with a simple heterogeneity-aware policy: tasks execute on normal cores but may be migrated to a powerful core if it becomes idle
- (d) Rinnegan: Stub decides where to run tasks based on processing unit utilization