Understanding Latency in Software Defined Networks

Junaid Khalid

Keqiang He, Sourav Das, Aditya Akella

Li Erran Li, Marina Thottan

WISCONSIN UNIVERSITY OF WISCONSIN–MADISON

Bell Labs
Latency in SDN

Time taken to install 100 rules?

Can be as large as 10 seconds!!!
Do applications care about latency?

Latency is critical to many applications

- **MicroTE** routes predictable traffic on time scales of 1-2s
- Limits the applicability of SDN applications

 Latency can undermine MicroTE’s effectiveness

Applications assume latency is low and constant

- Reroute the affected flows quickly in face of failures
- Longer update time increases congestion and drops

 Latency can inflate failover time by nearly 20s!
Factors contributing to Latency?

Robust Control Software Design and Distributed Controllers

- Speed of Control Programs and Network Latency
 - Not received much attention
- Latency in network switches
Our Work

Two contributions:

• Systematic experiments to explore latencies in production switches

• Design a framework to overcome the impact of latencies
Outline

• Motivation

• Elements of Latency

• Measurement Methodology

• Inbound Latency

• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Outline

• Motivation

• Elements of Latency
• Measurement Methodology

• Inbound Latency

• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Elements of Latency

1. Inbound Latency

- **I1:** Send to ASIC SDK
- **I2:** Send to OF Agent
- **I3:** Send to Controller
Elements of Latency

1. Inbound Latency
2. Outbound Latency

Outbound Latency

- **O1**: Parse OF Msg
- **O2**: Software schedules the rule
- **O3**: Reordering of rules in table
- **O4**: Rule is updated in table
Outline

• Motivation
• Elements of Latency
• **Measurement Methodology**
• Inbound Latency
• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Latency Measurements - Setup

Switches:
- **POX Controller**
- **Pktgen**
- **Libpcap**

Control Channel:
- Flows IN
- Flows OUT

Openflow Switch

<table>
<thead>
<tr>
<th>Switch</th>
<th>CPU</th>
<th>RAM</th>
<th>Flow table size</th>
<th>Data Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor A</td>
<td>1 Ghz</td>
<td>1 GB</td>
<td>896</td>
<td>1410Gbps + 440Gbps</td>
</tr>
<tr>
<td>Vendor B</td>
<td>2 Ghz</td>
<td>2 GB</td>
<td>4096</td>
<td>4010Gbps +440Gbps</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Elements of Latency
• Measurement Methodology

• Inbound Latency

• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Inbound Latency

- Increases with flow arrival rate
- CPU Usage is higher for higher flow arrival rates

<table>
<thead>
<tr>
<th>Flow Arrival Rate (packets/sec)</th>
<th>Mean Delay per packet_in (msec)</th>
<th>CPU Usage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>7.1</td>
</tr>
<tr>
<td>100</td>
<td>3.32</td>
<td>15.7</td>
</tr>
<tr>
<td>200</td>
<td>8.33</td>
<td>26.5</td>
</tr>
</tbody>
</table>

vendor A switch
Inbound Latency

- Increases with interference from outbound msgs

vendor A switch 200 flows/sec
Outline

• Motivation
• Elements of Latency
• Measurement Methodology
• Inbound Latency
• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Outbound Latency

• Latency for three different flow_mod operations
 Insertion
 Modification
 Deletion

• Impact of key factors on these latencies
 Table occupancy
 Rule priority structure
Outline

• Motivation
• Elements of Latency
• Measurement Methodology
• Inbound Latency

• Outbound Latency
 • Insertion
 • Modification
 • Deletion
Insertion Latency – Priority Effects

Vendor B switch

(a) Burst size 100, **same** priority

(b) Burst size 100, **increasing** priority
Insertion Latency – Priority Effects

(a) Burst size 100, **same** priority

(b) Burst size 100, **increasing** priority

Vendor B switch
Insertion Latency – Priority Effects

Vendor B switch

(a) Burst size 100, **same** priority

(b) Burst size 100, **increasing** priority

TCAM

<table>
<thead>
<tr>
<th>100</th>
<th>0x0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>
Insertion Latency – Priority Effects

Vendor B switch

(a) Burst size 100, same priority

(b) Burst size 100, increasing priority
Insertion Latency – Priority Effects

Vendor B switch

(a) Burst size 100, **same** priority

(b) Burst size 100, **increasing** priority
Insertion Latency – Priority Effects

(a) Burst size 800, \textit{same} priority

(b) Burst size 800, \textit{decreasing} priority
Insertion Latency – Priority Effects

(a) Burst size 800, **same** priority

(b) Burst size 800, **decreasing** priority

Vendor A switch

0x0000

TCAM
Insertion Latency – Priority Effects

(a) Burst size 800, same priority
(b) Burst size 800, decreasing priority

Vendor A switch

TCAM

0x0000

100
101
102
103
104
Insertion Latency – Priority Effects

Vendor A switch

(a) Burst size 800, same priority

(b) Burst size 800, decreasing priority

TCAM
Insertion Latency – Priority Effects

(a) Burst size 800, **same** priority

(b) Burst size 800, **decreasing** priority

Vendor A switch

TCAM

0x0000

99

100

101

102

103

104
Insertion Latency – Priority Effects

(a) Burst size 800, **same** priority

(b) Burst size 800, **decreasing** priority

Vendor A switch

<table>
<thead>
<tr>
<th>Rule #</th>
<th>0x0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

TCAM

104
Insertion Latency – Table occupancy Effects

- **Rule Priority Structure and Table Occupancy**
- **TCAM Organization and # Of Slices**
- **Switch Software Overhead**

(a) low priority rules into a table with **high priority** existing rules

(b) high priority rules into a table with **low priority** existing rules

Vendor B switch
Outline

• Motivation
• Elements of Latency
• Measurement Methodology
• Inbound Latency
• Outbound Latency
 • Insertion
 • **Modification**
 • Deletion
Modification Latency

- Higher than Insertion latency for vendor B
- Not affected by rule priority but affected by table occupancy

![Graphs showing modification latency for Vendor B switches with 100 and 200 rules in the table.](image-url)
Outline

• Motivation
• Elements of Latency
• Measurement Methodology
• Inbound Latency

• **Outbound Latency**
 • Insertion
 • Modification
 • Deletion
Deletion Latency

• Higher than Insertion latency for both vendor A and B
• Not affected by rule priority but affected by table occupancy
Deletion Latency

- Higher than Insertion latency for both vendor A and B
- Not affected by rule priority but affected by table occupancy

![Graph showing Deletion Latency](image)

Deletion is causing TCAM Reorganization

Vendor A switch
Summary

• Latency in SDN is *critical* to many applications

• Assumption: Latency is *small or constant*

• Latency is high and variable

• Varies with Platforms, Type of operations, Rule priorities, Table occupancy, Concurrent operations

• Key Factors: *TCAM Organization, Switch CPU* and *inefficient Software Implementation*
Summary

- Latency in SDN is *critical* to many applications
- Assumption: *Latency is small or constant*
- Latency is high and variable
- Varies with Platforms, Type of operations, Rule priorities, Table occupancy, Concurrent operations
- Key Factors: *TCAM Organization, Switch CPU* and *inefficient Software Implementation*
Backup Slides
Impact of Concurrent CPU jobs

• Impacts insertion delay. E.g. *Polling Statistics*
• Polling stats impacts more when table occupancy is higher

![Low Power CPU delays concurrent jobs](chart)

Vendor B