Fast, Accurate Simulation for SDN Prototyping

Mukta Gupta
University of Wisconsin
mgupta@cs.wisc.edu

Joel Sommers
Colgate University
jsommers@colgate.edu

Paul Barford
University of Wisconsin
pb@cs.wisc.edu
Publication

In the proceedings of hotSDN ’13, ACM SIGCOMM, August 16, 2013, Hong Kong, China.
Overview

- Motivation
- Related Work
- Goals
- fs-sdn overview and background
- Design and Implementation
- System Evaluation
- Results: Speedup and Accuracy
- Summary
Motivation

- Prototyping, evaluating and debugging SDN applications is hard
 - Increasing scale, diversity, and complexity of apps
 - Will my SDN app behave as expected when deployed in the wild?
 - Does it operate correctly and efficiently at scale?
Overview

✓ Motivation
➢ Related Work
➢ Goals
➢ fs-sdn overview and background
➢ Design and Implementation
➢ System Evaluation
➢ Results: Speedup and Accuracy
➢ Summary

mgupta@cs.wisc.edu
SDN prototyping and debugging landscape

Simulation

Emulation

Live Deployment

Custom fluid-flow simulators (e.g., Al-Fares et al., 2008)
Extensions to packet-level simulators (e.g., Klein and Jarschel, 2013)
Mininet (Handigol et al., 2012)

Testbed experiments (e.g., Greenberg et al., 2009)
Virtual slice of a live network (e.g., with FlowVisor, Sherwood et al., 2010)

fs-sdn

mgupta@cs.wisc.edu
Overview

✓ Motivation
✓ Related Work
✔ Goals
✔ fs-sdn overview and background
✔ Design and Implementation
✔ System Evaluation
✔ Results: Speedup and Accuracy
✔ Summary
Goals

- A controller API environment to facilitate transition to live environments
- Ability to generate realistic application traffic flows
- Capability to scale up to large networks
- Facilities for detailed debugging and tracing
Overview

✓ Motivation
✓ Related Work
✓ Goals
 ➢ fs-sdn overview and background
 ➢ Design and Implementation
 ➢ System Evaluation
 ➢ Results: Speedup and Accuracy
 ➢ Summary
fs-sdn Background

• Designed as extensions to the fs network flow record generator (INFOCOM 2011)
 o Written in Python
 o Uses discrete event simulation to drive flow record generation
 o Flowlets instead of packets
 o Accurate to 1 second time scales, way faster than ns2
Overview

✓ Motivation
✓ Related Work
✓ Goals
✓ fs-sdn overview and background
 ➢ Design and Implementation
 ➢ System Evaluation
 ➢ Results: Speedup and Accuracy
 ➢ Summary
fs-SDN design and implementation

mgupta@cs.wisc.edu
Overview

✓ Motivation
✓ Related Work
✓ Goals
✓ fs-sdn overview and background
✓ Design and Implementation
 ➢ System Evaluation
 ➢ Results: Speedup and Accuracy
 ➢ Summary
System evaluation

- Set up congruent experiments in fs-sdn and Mininet

Traffic
- CBR
 (10 and 100 Mbps)
- Harpoon Traffic
 (5 and 25 Mbps)

Topology
- 1
- 10
- 50
- 100

Controller
- L3 Shortest Path
Overview

✓ Motivation
✓ Related Work
✓ Goals
✓ fs-sdn overview and background
✓ Design and Implementation
✓ System Evaluation
➢ Results: Speedup and Accuracy
➢ Summary
Results: accuracy

Difference??
fs-sdn ignores packet headers

CBR low load (10 Mb/s),
small topology (10 switches)
Results: accuracy

Performance impact of underlying host

mgupta@cs.wisc.edu
Results: accuracy

CBR high load (100 Mb/s), medium topology (50 switches)
Results: speedup

- Tables show fs-sdn execution times for scenarios with 900 simulated seconds

<table>
<thead>
<tr>
<th>Load</th>
<th>Tiny</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>6</td>
<td>8</td>
<td>33</td>
<td>72</td>
</tr>
<tr>
<td>High</td>
<td>4</td>
<td>8</td>
<td>31</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load</th>
<th>Tiny</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>16</td>
<td>33</td>
<td>104</td>
<td>193</td>
</tr>
<tr>
<td>High</td>
<td>30</td>
<td>62</td>
<td>194</td>
<td>337</td>
</tr>
</tbody>
</table>

mgupta@cs.wisc.edu
Overview

✓ Motivation
✓ Related Work
✓ Goals
✓ fs-sdn overview and background
✓ Design and Implementation
✓ System Evaluation
✓ Results: Speedup and Accuracy
➢ Summary
Summary and future work

• Fast and Accurate Simulation
• Seamless transition of controllers to “real” deployments
• Code available: https://github.com/jsommers/fs

• Continued work
 o Debugging and tracing capability
 o Improve scalability through parallelizing fs
 o Is it possible to bridge other (including non-Python) controller platforms?
Thank You

Questions?

mgupta@cs.wisc.edu