
ROOT: Replaying Multithreaded Traces
with Resource-Oriented Ordering

Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau
{zev,harter,dusseau,remzi}@cs.wisc.edu

University of Wisconsin-Madison, Department of Computer Sciences

Motivation

I Why I/O trace replay?
. A useful tool for storage benchmarking
. Real workloads offer a more informative

benchmark than synthetic ones
I Starting point: SOSP11, “A File is not a File...”
. iBench: 34 Apple desktop application

system-call traces
. Interesting challenge: how to replay?

Challenges

I Heavy use of threads in modern applications
makes trace replay much trickier

I Interactions between threads have major effects
on the performance and correctness of replay
attempts

close(3) = 0

open(path2, O_RDONLY) = 4

open(path1, O_RDONLY) = 3

read(3, buf, 1024) = 1024

read(3, buf, 1024) = 1024

fstat(4) = 0

Thread 1 Thread 2

Green arrows indicate ordering dependencies that replay must
preserve for correctness.

write(3, buf1, 1024) = 1024

open(path1, O_TRUNC) = 3

read(4, buf2, 1024) = 1024

open(path1, O_RDONLY) = 4

Thread 1 Thread 2

Here there is a more subtle dependency between Thread 1’s
write and Thread 2’s read.

A Simple Solution

I One easy answer to ordering problems: simply
preserve the ordering of the original trace.

I This is very pessimistic; it assumes dependencies
are present everywhere they could be.

Thread 1 Thread 2

read(4, buf2, 8192) = 8192

read(5, buf1, 4096) = 4096

read(5, buf1, 4096) = 4096

read(5, buf1, 4096) = 4096 read(4, buf2, 8192) = 8192

A trace with system call overlap.

Thread 1 Thread 2

read(4, buf2, 8192) = 8192

read(5, buf1, 4096) = 4096

read(4, buf2, 8192) = 8192

read(5, buf1, 4096) = 4096

read(5, buf1, 4096) = 4096

s
ta
ll
!

On a system with different performance characteristics, an
overly simplistic, order-preserving replay may be forced to
insert artificial stalls.

ROOT

I Resource-Oriented Ordering for Trace replay
I Basic idea:
. Observe ordering of subset of trace events

involving each resource
. Resources: paths, file descriptors, files, AIO

control blocks
. Constrain replay to preserve those partial

orderings
I Allows flexible, nondeterministic reordering

ARTC: ROOT Implemented

Source System

ARTC

Compiler
C Compiler

ARTC

Replayer
C les

shared

library

Target System

Emulation

fcntl(3, F_FULLFSYNC)
...

A

B

X

ZY

benchdir

/

M

/

A

B

X

ZY

FS metadata

fsync(3) = 0
...

Syscall trace

ARTC: an Approximate-Replay Trace Compiler.

I Compiles a trace and initial FS metadata state
snapshot into replayable benchmark

I ˜16KLoC (C, Bison, Flex)
I Over 80 system calls supported

I Cross-platform:

I Emulates non-standard system-calls where
necessary

I Reports detailed timing statistics

Evaluation

I Two criteria: semantic correctness and
performance accuracy across systems with
different performance characteristics

I Workloads:
. Correctness: Magritte (compiled iBench suite)
. Performance: four synthetic microbenchmarks,

two LevelDB macrobenchmarks
I Alternate strategies:
. Unconstrained: free-running multithreaded

replay
. Single-threaded: one replay thread for all trace

threads
. Temporally-ordered: multithreaded; constrained

to replay in the same order as the original trace

Results

Across workloads, ARTC achieves good replay
correctness and much better performance
accuracy than simpler replay methods.

T1 497

T2 215

T3 569

T4 45 409

127

664

190

301

174

41

478

160

664

158 506

158

426

432

A dependency graph for a four-thread LevelDB random-read
trace. The dependencies enforced by ARTC (solid green) are
much less restrictive than those necessary to enforce the
ordering of the original trace (dashed blue).

ARTC’s looser ordering constraints allow it to
achieve much more system-call overlap than
simpler replay methods:

1
2
3
4

Th
re
ad

s

Original LevelDB readrandom

3.
88

 a
vg

1
2
3
4

Th
re
ad

s

Temporally-ordered replay

2.
33

 a
vg

14.0 14.5 15.0 15.5 16.0
Time (seconds)

1

2

3

4
Th

re
ad

s
ARTC replay

3.
64

 a
vg

System call overlap of the original four-thread LevelDB
random-read workload and two replays. Temporally-ordered
replay achieves only 60% of the original application’s system
call concurrency, whereas ARTC’s replay achieves 90%.

Original Single-threaded ARTCTemporally-ordered

Workload
parallelism

0

50

100

150

200

250

300

El
ap

se
d 
tim

e 
(s
ec

on
ds

)

Disk
parallelism

0

10

20

30

40

50

60

70

El
ap

se
d 
tim

e 
(s
ec

on
ds

)

Cache
size

0

10

20

30

40

50

60

70

El
ap

se
d 
tim

e 
(s
ec

on
ds

)

I/O scheduler
time slice

0

20

40

60

80

100

120

El
ap

se
d 
tim

e 
(s
ec

on
ds

)

ARTC achieves substantially more accurate performance
than simpler replay methods across a variety of workloads
and differing system configurations.

Conclusions

ARTC’s ROOT-ordered replay provides much
more useful replay performance than simpler
replay strategies, while preserving correctness.

ARTC and Magritte are available for download at https://research.cs.wisc.edu/adsl/Software/artc

https://research.cs.wisc.edu/adsl/Software/artc

