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Crash Consistency
• Modern file systems maintain crash 

consistency by carefully ordering 
writes to disk

• File system conflate ordering writes to 
disk with durability, thus making 
ordering very expensive

• Maintaining consistency degrades 
performance by 10x for some 
workloads

• Users forced to choose between 
performance and consistency

Ordering Disk Writes

Ext4 w/o 
flush

Ext4 w/ 
flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time/op (ms) 23.28 152 15.30
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Optimistic 
Crash Consistency

• Provides both high performance and 
strong crash consistency

• Decouples ordering from durability

• Eliminates flushes in the common case

• Employs checksums, delayed writes, 
and other techniques

• osync() provides ordering among 
writes at high performance and 
eventual durability

Asynchronous
 Durability Notifications
• Extra signal to upper layer when block 

is destaged from cache to platter

• Frees disk to optimize writes for 
maximum efficiency

Disk
 Cache

Disk
 Platter

BA

A B

A B

Optimistic Journaling
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• Optimistic journaling removes those flushes, and handles the resultant re-ordering of  
blocks using different techniques

• Checksums are used to detect if the journal commit (JC) is reordered before D and JM 
• The metadata write (M) is delayed until durability notifications  (        ) are received for 

the previously issued D, JM, and JC (metadata writes happen in the background) 

D Data JM Journal metadata JC Journal commit M In-place metadata

Performance Evaluation

• We compare the performance of OptFS against ext4 with and without flushes

• OptFS performs 3-10x better than ext4 with flushes on many workloads

• OptFS performs almost as well (and sometimes better) than ext4 without 
flushes, despite providing strong consistency

Case study: SQLite 
using osync() on OptFS 

• Crashed SQLite in middle of transactions

• Studied behavior after recovery

• Using osync(), SQLite provides ACI (with 
eventual durability) semantics at 10x the 
performance of ext4 with flushes

• Problem: disk writes are ordered with 
expensive cache flushes

• Inefficient when only ordering is required

• Ext4 journaling uses disk cache flushes between different phases of journaling to 
ensure ordering among disk writes
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