
Optimistic Crash Consistency
Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

Crash Consistency
• Modern file systems maintain crash

consistency by carefully ordering
writes to disk

• File system conflate ordering writes to
disk with durability, thus making
ordering very expensive

• Maintaining consistency degrades
performance by 10x for some
workloads

• Users forced to choose between
performance and consistency

Ordering Disk Writes

Ext4 w/o
flush

Ext4 w/
flush OptFS

Inconsistent 73 0 0

Old state 8 50 76

New state 19 50 24

Time/op (ms) 23.28 152 15.30

5

10

15

20

Seq Write Seq over-write Random writes Createfiles Varmail MySQL OLTP

ext4 (flush) ext4 (no flush) OptFS

Disk
 Cache

Disk
 Platter

BA

A B

Flush

A

Optimistic
Crash Consistency

• Provides both high performance and
strong crash consistency

• Decouples ordering from durability

• Eliminates flushes in the common case

• Employs checksums, delayed writes,
and other techniques

• osync() provides ordering among
writes at high performance and
eventual durability

Asynchronous
 Durability Notifications
• Extra signal to upper layer when block

is destaged from cache to platter

• Frees disk to optimize writes for
maximum efficiency

Disk
 Cache

Disk
 Platter

BA

A B

A B

Optimistic Journaling

D1 JM1 JC1

D1 JM2 JC2

D1 JM1 JC1FLUSH FLUSH

• Optimistic journaling removes those flushes, and handles the resultant re-ordering of
blocks using different techniques

• Checksums are used to detect if the journal commit (JC) is reordered before D and JM
• The metadata write (M) is delayed until durability notifications () are received for

the previously issued D, JM, and JC (metadata writes happen in the background)

D Data JM Journal metadata JC Journal commit M In-place metadata

Performance Evaluation

• We compare the performance of OptFS against ext4 with and without flushes

• OptFS performs 3-10x better than ext4 with flushes on many workloads

• OptFS performs almost as well (and sometimes better) than ext4 without
flushes, despite providing strong consistency

Case study: SQLite
using osync() on OptFS

• Crashed SQLite in middle of transactions

• Studied behavior after recovery

• Using osync(), SQLite provides ACI (with
eventual durability) semantics at 10x the
performance of ext4 with flushes

• Problem: disk writes are ordered with
expensive cache flushes

• Inefficient when only ordering is required

• Ext4 journaling uses disk cache flushes between different phases of journaling to
ensure ordering among disk writes

ADN ADN

ADN

CHECKSUMS

D2 JM2 JC2 M2FLUSH FLUSH

D2 JM2 JC2

CHECKSUMS

M2M1

D2 JM1 JC1

Pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 t
o

ex
t4

 w
ith

 fl
us

he
s

M1

*

*

