BACKGROUND:
- TV whitespaces are vacant TV channels that can be used for unlicensed communications.
- It has a large spectrum resource and good propagation range.
- White space devices query spectrum occupancy databases to determine which channel is free to use.

GOALS:
- How much spectrum is generally wasted by commercial databases?
- How to improve databases?
- How can we reduce spectrum waste with local measurements?

V-Scope:
- Put spectrum sensors on public transmit to collect wide-area measurements
- Use measurements to augment propagation models in databases

CHALLENGES AND SOLUTIONS:
- Zoom-in detection to detect weak primary signals in real-time
- Weighted model fitting to deal with measurement density variation

Motivation
Commercial spectrum databases have errors in predicting whitespaces

Primary Detection Algorithm

How to detect and measure the power of primary signals up to -114dBm?

Example of Strong Primary Signals
- TV at -60dBm
- MIC at -114dBm

Challenge and Solution for Detecting Weak Primary Signals
- Capture FFT Samples
- Zoom-in Peak Spectrum
- Feature Extraction
- Classification
- Power Estimation

Power Estimation
\[
power = \sum_{f \in \text{bw}} p_i + \delta
\]

Accuracy of Spectrum Databases

DEPLOYMENT
- Deploy on a metro bus for two months
- Measure 1000,000 locations over 150 square km

- Negligible under-protection is found

Spectrum Waste in TV Protection
- Up to 42% area is wasted by over-protection

Quality Difference in Whitespaces Channels

Model Refinement Procedure
- Use measurements to fit parameters of propagation models
- Add virtual measurements

Road Segment
- Global Measurement
- Weight
- M1
- M2
- M3
- M4

Real World Example
- 99th Quartile in Power Prediction Error
- Reduction in Spectrum Waste for Protecting TV

Database Improvement
- 5 Fold Cross Validation
- Fitting a local model for each 10km road segment can reduce spectrum waste up to 4x