
 Reliable Storage Using Storage Class Memory (SCM)
Prashant Saxena, Michael Swift

prashant@cs.wisc.edu, swift@cs.wisc.edu

 Storage Class Memory

Key Features

 Persistent

 Load/Store interface

 Short access times

I/O Interfaces

 POSIX style File Systems

 Key Value File Systems

 Library File Systems

 ns µs

 ms

SCM

SSD RAM

 Motivation
Pros

 High performance with low latency

Cons

 Limited endurance

 Single-node attachment as memory

 Standard reliability models like RAID reduce

performance and limit programming models

 Need to rethink reliability in SCM devices

Why reliability model for SCM is challenging?

RAID on SCM not effective

 Number of devices limited by on-board DIMM slots

 Doubling SCM capacity is expensive

 Replicating data to another SCM is expensive and

wasteful

 Hard to compose with direct access as persistent

memory

Using SSD as backing store

 Different interface: byte-addressable memory vs

block-addressable device

 Latency of replication hurts performance (SSD at

least twice as slow as SCM for write latencies)

Why ‘msync’? Our Solution

Our Approach

 Replicate data to a lower latency SSD

 Guarantee consistency but relax freshness

How

 Treat SCM contents as memory-mapped files

 Use ‘msync’-like techniques to mirror data to a

cheap SSD for recovery

Use memory transactions to create and modify

data on SCM
 Coordinate ‘msync’ with memory transactions to

avoid long pauses

SCM Logs

1. Begin

Snapshot 3. Flush

updates to logs

5. ‘msync’

changes to SSD

SSD

6. Update

the logs

7. Snapshot

Complete

Snapshot

Manager

User

Process

I/O out I/O in

Lock Manager

2. Stall user

threads

4. Resume user

threads

Logs

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

Time to msync

Number of dirty pages

T
im

e
 (

M
ic

ro
-s

e
c
o

n
d

s
)

 EXT4 on RAMDISK

8 GB File

Efficient at

finding dirty

pages in large

files

Future Work

 Asynchronous ‘msync’ implementation

Mnemosyne Integration

 Explore JDB2 layer of EXT4 for journaling

 Efficient locking protocol for minimum thread stalling

