
Reducing Write Traffic to Remote Storage
Ramnatthan Alagappan, Brandon Davis, Avinaash Gupta

IS BLOCK INTERFACE APPROPRIATE
FOR REMOTE STORAGE?

DESIGN AND IMPLEMENTATION OF
OUR PROTOTYPE

The block device interface enables computer system software such as file
systems to communicate with the storage system. When dealing with sector-
based storage devices like HDDs, it is necessary to work with blocks of data.
But many protocols maintain this block granularity for data in other layers of
the system. This adds significant overhead in the amount of data transferred
to the storage system. In context of remote storage, the problem becomes
more important because the data is transferred over the network. For
example, Network Block Device (NBD), and iSCSI work with blocks in the
network layer, sending entire blocks of data for each request. This can result
in excessive data transfer when the useful data in a request is smaller than
the block size. In congested networks, every byte counts.

With small modifications to NBD to avoid full block requests where possible,
we show a savings of over 70% in write traffic for certain workloads.

LAYERS IN A REMOTE STORAGE
SYSTEM

CACHE AND DIFF

Key idea: Logically partition the block into chunks of equal size. Modified
chunks are identified by a simple diff. A bitmap is also sent along with the
chunks to denote which all chunks have been modified.
Observation: Choice of chunk size and bitmap size will have effects on
savings achieved.
Client:
• Cache blocks which are read/written through NBD.
• For subsequent writes, perform diff and send only the changed chunks of

the block(s).
Server:
• Read the blocks(s) from disk, apply diff and write back.

Chunk size
(bytes)1

Bitmap size
(bytes)

For
savings

4096 1 1

2048 1 1

1024 1 1

512 1 1

256 2 1

128 4 1

64 8 1

32 16 1

16 32 3

8 64 9

4 128 33

2 256 129

1 512 513

CHOICE OF CHUNK SIZE
• The chosen chunk size and

the corresponding bitmap size
will influence the effectiveness
of our technique.

• While 1 byte chunks give finest
granularity for finding
unmodified chunks, we need
to find 513 such chunks to
benefit from our technique.

• For 32 byte chunks we just
need to find 1 unmodified
chunk for savings.

MICRO
BENCHMARKS

Random writes Sequential writes

Distribution of write sizes for 64 byte writes with sync
probability of 0.1

MACRO BENCHMARKS-
SYSBENCH MYSQL OLTP

Average bytes sent per block– without and with
cache (LRU eviction)

COW FILE SYSTEMS
– BTRFS

FUTURE
WORK• Study proprietary remote block device services such as Amazon EBS.

• We want to answer questions like:
• How multiple clients connect to the device in such a

scenario?
• How can we ensure consistency across all clients?
• How to SCSI reservations fit in this model?

• Can we envision a file system which is divided into block independent
and block dependent layers?

• Study the impact of savings in network traffic that our technique brings
about in congested networks.

[1] Anurag Acharya, Mustafa Uysal, Joel Saltz, Active disks: programming
model, algorithms and evaluation, ACM SIGPLAN Notices, v.33 n.11,p.81-
91, Nov. 1998.
[2] Riedel, E. and Gibson, G., Active Disks - RemoteExecution for Network-
Attached Storage, Technical Report CMU-CS-97-198, December 1997.
[3] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M. Shipman,
Active Flash: Out-of-core Data Analytics on Flash Storage, In MSST,2012.
[4] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran., Object Storage:
the future building block for storage systems, In LGDI 05: Proceed-ings of
the 2005 IEEE International Symposiumon Mass Storage Systems and
Technology, pp.119123, Washington, DC, USA, 2005.
[5] Matias Bjorling, Philippe Bonnet, Luc Bouganim,Niv Dayan, et al., The
necessary death of the block device interface, In 6th Biennial Conference
on Innovative Data Systems Research (CIDR), 2013.

REFERENCES

	Slide 1

