
On the Practical Exploitability of Dual EC
in TLS Implementations

Stephen Checkoway1, Matt Fredrikson2, Ruben Niederhagen3, Matt Green1, Tanja Lange3, Tom Ristenpart2, !
Dan Bernstein3,4, Jake Maskiewicz5, Hovav Schacham5

Johns Hopkins1, University of Wisconsin2, TU Eindhoven3, University of Illinois — Chicago4, UCSD5

Results

Is it exploitable? Methodology

Background

s s� adin

adin = hashdf(add. input)

(optional, adin = 0 default)

s
(seed, 32 bytes)

s (sP)

x

r (sQ)

x

out outkLSB(r,30)

Return # requested bytes

from start of out

len(out) � # requested bytes

Client Server

Generate

client random

(� 28 bytes)

Generate

session ID,

server random

( 32 + 28

bytes)

c

l

i

e

n

t

r

a

n

d

o

m

Generate

PMS

(46 bytes)

s

e

r

v

e

r

r

a

n

d

o

m

,

s

e

s

s

i

o

n

I

D

,

c

e

r

t

(

p

k

)

E

n

c

(

p

k

,

P

M

S

)

,

F

i

n

i

s

h

e

d

F

i

n

i

s

h

e

d

MS = PRF(PMS, ”master secret”, client random —— server random)

Either of these could be
Dual EC

We need at least 30
contiguous bytes!

Backdoor
• Suggested by Shumow and Ferguson, 2007!
• Dual EC based on points P and Q (P is prime-order

generator)!
• …so there exists a constant d such that dQ = P!
• Outputs correspond to the x-coordinate of internal state s,

multiplied by Q (i.e., out = LSB[(sQ)x, 30])!
• Knowledge of d sufficient to learn the next state s from out

• Dual EC is a deterministic random bit generator included in
NIST SP 800-90 until April 2014!

• Leaked documents led many to believe that Dual EC
contains a backdoor known to intelligence agencies!

History
1. Guess 2 most-significant bytes of output to get (sQ)x!
2. Multiply by d, i.e., d(sQ) = sP!
3. (sP)x is the next internal state!
Complexity is ~215

Attack

• Not release enough random data in the clear!
• Mix additional sources of random data into state/output!
• Use unpredictable interleavings of calls to Dual EC!
• Cache unused partial output blocks!
• Aggressively re-seed the internal state!
• Implement the spec incorrectly (this happened — twice!)

In practice, an actual implementation might…

In short, implementation details matter — the backdoor is fragile

• Studied three commercial/open source implementations:
RSA’s BSAFE, Microsoft’s SChannel, and OpenSSL-FIPS!

• Assume a passive network adversary who knows the
backdoor constant d such that dQ = P!

• “Implemented” this assumption by modifying implementations
to use a new value for Q, for which we know d!
• Modified OpenSSL-FIPS source to encode new Q!
• Reverse-engineered SChannel, BSAFE-Java, BSAFE-C to

overwrite Q, disable known-answer tests!
• Instantiated servers using OpenSSL-FIPS (Apache), BSAFE,

and SChannel (IIS), as well as a client using SChannel (IE)!
• Captured packet traces using Wireshark, attempted to derive

session keys!

Goal: understand whether variants of Shumow-Ferguson
attack work on real TLS implementations

Default Cache Ext. Bytes per Adin Attack Time
Library PRNG Output Random Session Entropy Complexity (minutes)

BSAFE-C v1.1 X X X† 31–60 — 30 · 215(Cv + Cf) 0.04
BSAFE-Java v1.1 X X† 28 — 231(Cv + 5Cf) 63.96
SChannel I‡ 28 — 231(Cv + 4Cf) 62.97
SChannel II‡ 30 — 233(Cv + Cf) + 217(5Cf) 182.64
OpenSSL-fixed I* 32 20 215(Cv + 3Cf) + 220(2Cf) 0.02
OpenSSL-fixed III** 32 35 + k 215(Cv + 3Cf) + 235+k(2Cf) 2k · 83.32
*
Assuming process ID and counter known.

**
Assuming 15 bits of entropy in process ID, maximum counter of 2

k
.

†
With a library–compile-time flag.

‡
Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

BSAFE Instances by Country

22%

3%
3%
4%

7%

60%

United States
Netherlands
Germany
United Kingdom
Australia
Other

We performed a ZMap scan of 38 million servers
• Only 720 were running BSAFE!
• 2.7 million were running SChannel

• Experiments performed on a four-node, quad-socket Opteron 6276 cluster!
• Cv is a variable-base scalar multiplication, Cf is a fixed-base multiplication!
• Times refer to attack on a single session!
• For all but BSAFE-C, dragnet surveillance is unlikely!
• Targeted surveillance is possible for all tested implementations

