()

A WISCONSIN

Al
\\\"",/ UNIVERSITY OF WISCONSIN-MADISON

On the Practical Exploitability of Dual EC
in TLS Implementations

Stephen Checkoway?!, Matt Fredrikson2, Ruben Niederhagen3, Matt Green', Tanja Lange3, Tom Ristenpart?,
Dan Bernstein34, Jake Maskiewicz®, Hovav Schacham?

Johns Hopkins', University of Wisconsin?, TU Eindhoven3, University of lllinois — Chicago?, UCSD?

Background

History

* Dual EC is a deterministic random bit generator included in
NIST SP 800-90 until April 2014

* Leaked documents led many to believe that Dual EC
contains a backdoor known to intelligence agencies

Backdoor

* Suggested by Shumow and Ferguson, 2007

* Dual EC based on points P and Q (P is prime-order
generator)

* ...S0 there exists a constant d such that dQ =P

* QOutputs correspond to the x-coordinate of internal state s,
multiplied by Q (i.e., out = LSB[(sQ)x, 30])

* Knowledge of d sufficient to learn the next state s from out

Is it exploitable?

In practice, an actual implementation might...

* Not release enough random data in the clear

* Mix additional sources of random data into state/output

* Use unpredictable interleavings of calls to Dual EC

* Cache unused partial output blocks

* Aggressively re-seed the internal state

* Implement the spec incorrectly (this happened — twice!)

In short, implementation details matter — the backdoor is fragile

Client Server

Generate /

~ session 1D,
D, cert(pk) server random

(<32 + 28

bytes)

—P

Either of these could be
Dual EC

Generate
client random

(> 28 bytes)

client random

ion I
Generate server random, Session

PMS
(46 bytes)

Enc(pk, PMS), Finished

We need at least 30
contiguous bytes!

Finished

dl
e ma

MS = PRF(PMS, "master secret”, client random server random)

Attack

1. Guess 2 most-significant bytes of output to get (sQ)x
2. Multiply by d, i.e., d(sQ) = sP
3. (sP)xis the next internal state

Complexity is ~215

adin = hashdf(add. input)
(optional, adin = 0 default)

LSB(r, 30)

—1r < (5Q) —>out < out|

Y
—>5 < (SP)g

——Ss < S D adin

len(out) > # requested bytes

\4

8 Return # requested bytes
(seed, 32 bytes) from start of out

Methodology

Goal: understand whether variants of Shumow-Ferguson
attack work on real TLS implementations

Studied three commercial/open source implementations:

RSA’'s BSAFE, Microsoft’'s SChannel, and OpenSSL-FIPS

Assume a passive network adversary who knows the

backdoor constant d such that dQ = P

“Implemented” this assumption by modifying implementations

to use a new value for Q, for which we know d

* Modified OpenSSL-FIPS source to encode new Q

* Reverse-engineered SChannel, BSAFE-Java, BSAFE-C to
overwrite Q, disable known-answer tests

Instantiated servers using OpenSSL-FIPS (Apache), BSAFE,

and SChannel (I1S), as well as a client using SChannel (IE)

Captured packet traces using Wireshark, attempted to derive

session keys

Results
We performed a ZMap scan of 38 million servers
Default Cache Ext. Bytes per Adin Attack Time
Library PRNG Output Random Session Entropy Complexity (minutes) ° Only 720 were running BSAFE
BSAFE-C vl.1 v v Vel 31-60 — 30 - 212(C, + Cy) 0.04 e 27 million were running SChannel
BSAFE-Java v1.1 v val 28 — 231(C, +5C) 63.96
SChannel I# 28 — 2%(Cy +4Cy) 62.97 BSAFE |
v nstances by Countr
SChannel IT# 30 — 233(C, + C)+ 217 5C) 182.64 y y ® United States
OpenSSL-fixed I" 32 20 215(C, +3C) + 22°(2C) 0.02 ® Netherlands
OpenSSL-fixed IIT™ 32 35+k 215(C,+3Cy) +23Tk(2C,;) 2% .83.32 Germany
® United .Klngdom
" Assuming process ID and counter known. = Assuming 15 bits of entropy in process ID, maximum counter of 2*. : gl:ﬁgra“a

T With a library—compile-time flag.

* Experiments performed on a four-node, quad-socket Opteron 6276 cluster
* (Cvis a variable-base scalar multiplication, Cris a fixed-base multiplication

* Times refer to attack on a single session
* For all but BSAFE-C, dragnet surveillance is unlikely
* Jargeted surveillance is possible for all tested implementations

¥ Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

