
A Study of Linux File System Evolution
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu

Local file systems are important
• Desktop and laptop: Windows, Mac, Linux
• Data center / Cloud: Google FS, Hadoop DFS
• Mobile devices: Andriod, iPhone

Why study is useful
• Study drives system designs
• Answer important questions quantitatively
• Valuable for different communities
• File system developers
• System researchers
• Tool builders

How We Studied ?
File systems are evolving over time
• Code base is not static
• New features, bug-fixing, performance, reliability

Patches describe such evolution
• How one version transforms to the next
• Every patch is available
• “System software archeology” is possible

Study with other rich information
• Source code, design documents
• Forum, mailing list

Q1: What do patches do ?

Q2: What do bugs look like ?

Q3: Do bugs diminish over time ?

Q4: What consequences do bugs have ?

Q5: Where does complexity lie ?

Q6: Do bugs occur on normal paths or

failure paths ?

Q7: What performance techniques are

used across file systems ?

Motivation What We Did ?
Our method: manual inspection
• XFS, Ext4, Btrfs, Ext3, Reiserfs and JFS
• All Linux 2.6 major versions
• 5079 patches, multiple passes

Quantitatively analyze file systems
• Patch types, bug patterns, bug consequences
• Performance improvement
• Reliability enhancement

Provide an annotated dataset
• Rich data for further analysis

Key Questions Patch Overview

A1: 45% of patches are maintenance patches;
35% of patches are bug fixings. Even stable file
systems, such as Ext3, have a large percentage
of bug patches.

1 Bug Pattern2

A2: Semantic bugs dominate other types (about
55% of total bugs). Concurrency bugs account
for about 20% (higher than user-level software,
which has about 3% of concurrency bugs)

 Bug Consequence4

A4: Corruption and crash are most common,
(about 40% and 20%). Wrong behavior accounts
for only 5% to 10%, while it is dominant in user-
level applications.

Bug Trend

A3: The total number of bugs do not diminish
over time (even for stable file systems), rather
ebbing and flowing over time.

3

Performance7

A7: A wide variety of performance techniques are
used across file systems. Performance likely justifies
the use of more complicated and time saving
synchronization methods.

Failure Path

A6: 38% of bugs are on failure paths. Common
bug examples: wrong or miss state update
(semantic); miss unlock (concurrency); resource
leak, null dereference (memory).

6

Correlation

A5: Metadata management has high bug
density (e.g., inode and super block). Tree
structures are not particularly error-prone.

5

Conclusions
A large-scale study is feasible
• Time consuming, but manageable
• Similar study for other OS components

Research should match reality
• New tools are required for semantic bugs
• More attention for failure paths

History repeats itself
• Same mistakes, same performance improvement

Dataset is available
• http://research.cs.wisc.edu/adsl/Traces/fs-patch/
• More data in our paper and dataset

0%

20%

40%

60%

80%

100%

XFS Ext4 Btrfs Ext3 Reiser JFS All

2004 1154 809 537 384 191 5079

Bug

Performance

Reliability

Feature

Maintenance

0%

20%

40%

60%

80%

100%

XFS Ext4 Btrfs Ext3 Reiser JFS All

511 450 358 229 158 80 1786

Semantic

Concurrency

Memory

Error Code

0 10 20 30 40
0

10

20

30

40 XFS

0 10 20 30 40
0

10

20

30

40

Ext4

0 10 20 30 40
0

20

40

60

80 Btrfs

0 10 20 30 40
0

5

10

15 Ext3

0 10 20 30 40
0

10

20

30

40 ReiserFS

0 10 20 30 40
0

5

10 JFS

N
u

m
b

e
r

o
f

B
u

g
s

Linux Version

Semantic Concurrency Memory Error Code

0%

20%

40%

60%

80%

100%

XFS Ext4 Btrfs Ext3 Reiser JFS All

525 461 366 235 166 80 1833

Corruption

Crash

Error

Deadlock

Hang

Leak

Wrong

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
XFS

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
Ext4

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
Btrfs

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
Ext3

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
ReiserFS

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4
JFS

P
e

rc
e
n

ta
g

e
 o

f
B

u
g

s

Percentage of Code

file
balloc

inode
dir

super
extent

trans
other

tree

0%

20%

40%

60%

80%

100%

XFS Ext4 Btrfs Ext3 Reiser JFS All

200 149 144 88 63 28 672

0%

20%

40%

60%

80%

100%

XFS Ext4 Btrfs Ext3 Reiser JFS All

135 80 126 41 24 9 415

Sync

Access Opt

Scheduling

Scalability

Locality

Other

Sunday, 10 February 2013

