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Local file systems are important
• Desktop and laptop: Windows, Mac, Linux
• Data center / Cloud: Google FS, Hadoop DFS 
• Mobile devices: Andriod, iPhone

Why study is useful 
• Study drives system designs
• Answer important questions quantitatively
• Valuable for different communities
• File system developers
• System researchers
• Tool builders

How We Studied ? 
File systems are evolving over time
• Code base is not static 
• New features, bug-fixing, performance, reliability

Patches describe such evolution
• How one version transforms to the next
• Every patch is available
• “System software archeology” is possible

Study with other rich information
• Source code, design documents
• Forum, mailing list

Q1: What do patches do ?

Q2: What do bugs look like ?

Q3: Do bugs diminish over time ?

Q4: What consequences do bugs have ?

Q5: Where does complexity lie ?

Q6: Do bugs occur on normal paths or 

failure paths ?

Q7: What performance techniques are 

used across file systems ?

Motivation What We Did ?
Our method: manual inspection
• XFS, Ext4, Btrfs, Ext3, Reiserfs and JFS
• All Linux 2.6 major versions
• 5079 patches, multiple passes

Quantitatively analyze file systems
• Patch types, bug patterns, bug consequences
• Performance improvement
• Reliability enhancement

Provide an annotated dataset
• Rich data for further analysis

Key Questions         Patch Overview

A1: 45% of patches are maintenance patches; 
35% of patches are bug fixings. Even stable file 
systems, such as Ext3, have a large percentage 
of bug patches. 

1    Bug Pattern2

A2: Semantic bugs dominate other types (about 
55% of total bugs). Concurrency bugs account 
for about 20% (higher than user-level software, 
which has about 3% of concurrency bugs)

   Bug Consequence4

A4: Corruption and crash are most common, 
(about 40% and 20%). Wrong behavior accounts 
for only 5% to 10%, while it is dominant in user-
level applications.

Bug Trend

A3: The total number of bugs do not diminish 
over time (even for stable file systems), rather 
ebbing and flowing over time. 

3

Performance7

A7: A wide variety of performance techniques are 
used across file systems. Performance likely justifies 
the use of more complicated and time saving 
synchronization methods.

Failure Path

A6: 38% of bugs are on failure paths. Common 
bug examples: wrong or miss state update 
(semantic); miss unlock (concurrency); resource 
leak, null dereference (memory).
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Correlation

A5: Metadata management has high bug 
density (e.g., inode and super block). Tree 
structures are not particularly error-prone.

5

Conclusions
A large-scale study is feasible
• Time consuming, but manageable 
• Similar study for other OS components

Research should match reality
• New tools are required for semantic bugs
• More attention for failure paths

History repeats itself
• Same mistakes, same performance improvement 

Dataset is available 
• http://research.cs.wisc.edu/adsl/Traces/fs-patch/
• More data in our paper and dataset  
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