THE UNIVERSITY

WISCONSIN

MADIS ON

Motivation

Local file systems are important

* Desktop and laptop: Windows, Mac, Linux
* Data center / Cloud: Google FS, Hadoop DFS
 Mobile devices: Andriod, iPhone

Why study is useful
* Study drives system designs
* Answer important questions quantitatively
* Valuable for different communities
* File system developers
* System researchers
* Tool builders

Key Questions

Ql: What do patches do?
Q2: What do bugs look like ?

Q3: Do bugs diminish over time?

Q4: What consequences do bugs have ?

Q5: Where does complexity lie ?

Q6: Do bugs occur on hormal paths or

failure paths?

Q7: What performance techniques are

used across file systems?

Q Bug Trend

Bl Semantic B Concurrency B Memory W Error Code

o, XFS Ext4 ~ Birfs
301
20+

10+

%0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Ext3 ~ ReiserFS JFS

Number of Bugs

5

0 0 O0

0 10 20 30 40 0 10 20 30 40 10 20 30 40

Linux Version

A3: The total number of bugs do not diminish
over time (even for stable file systems), rather

ebbing and flowing over time.

a Failure Path

200 149 144 88 63 28 672
100% -

80%
60% -
40%

20% 1

0% -
XFS Ext4 Birfs Ext3 Reiser JFS All

A6: 38% of bugs are on failure paths. Common
bug examples: wrong or miss state update
(semantic); miss unlock (concurrency); resource
leak, null dereference (memory).

A Study of Linux File System Evolution

Lanyue Lu,Andrea C.Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu

How We Studied ?

File systems are evolving over time
* Code base is not static
* New features, bug-fixing, performance, reliability

Patches describe such evolution
* How one version transforms to the next
 Every patch is available

* “System software archeology” is possible

Study with other rich information
* Source code, design documents
* Forum, mailing list

” Patch Overview

2004 1154 809 537 384 191 5079
100% -

80% - I Maintenance
I Feature

60% -
| Reliability
40% A

I Performance

20% - I Bug

0%_XFS Ext4 Birfs Ext3 Reiser JFS Al
A l: 45% of patches are maintenance patches;
35% of patches are bug fixings. Even stable file
systems, such as Ext3, have a large percentage
of bug patches.

° Bug Consequence

525 461 366 235 166 80 1833

100°/o'. . . .
. l . IWrong

80% -

I Leak
60% - Hang
I Deadlock
40% A

I Error

20% - I Crash
I Corruption

0% -
XFS Ext4 Btrfs Ext3 Reiser JFS Al

A4: Corruption and crash are most common,
(about 40% and 20%). Wrong behavior accounts
for only 5% to 10%, while it is dominant in user-
level applications.

a Performance

135 80 126 41 24

Locality
I Scalability
I Scheduling

I Access Opt

I Sync

XFS Ext4 Birfs Ext3 Reiser JFS All

A7: A wide variety of performance techniques are
used across file systems. Performance likely justifies
the use of more complicated and time saving
synchronization methods.

What We Did ?

Our method: manual inspection
* XFS, Ext4, Btrfs, Ext3, Reiserfs and JFS

* All Linux 2.6 major versions

e 5079 patches, multiple passes

Quantitatively analyze file systems
* Patch types, bug patterns, bug consequences

* Performance improvement

* Reliability enhancement

Provide an annotated dataset
* Rich data for further analysis

a Bug Pattern

511 450 358 229 158 80 1786

I Error Code

I Memory

I Concurrency

I Semantic

XFS Ext4 Birfs Ext3 Reiser JFS All

A2: Semantic bugs dominate other types (about
55% of total bugs). Concurrency bugs account
for about 20% (higher than user-level software,
which has about 3% of concurrency bugs)

e Correlation

®file Yxinode Msuper ¥trans Viree
Oballoc Adir X extent - other

04 Ext4
0.3-
*

0.21

0.11
Ea

0.0 0.1 02 03 04 0-%% 01 02 03 04 00 0.1 02 03 04

©
~

0.4- 0.4+

ReiserFS
0.3 0.3

Percentage of Bugs

0.2 0.2

0.1 0.1:

0 01 02 0.3 04 0% 01 02 03 04

0.0 01 02 03 04 0.

Percentage of Code

A5: Metadata management has high bug
density (e.g., inode and super block). Tree
structures are not particularly error-prone.

Conclusions

A large-scale study is feasible
* Time consuming, but manageable
* Similar study for other OS components

Research should match reality
* New tools are required for semantic bugs
* More attention for failure paths

History repeats itself
* Same mistakes, same performance improvement

Dataset is available
* http://research.cs.wisc.edu/adsl/Traces/fs-patch/
* More data in our paper and dataset

Sunday, 10 February 2013

