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Motivation

Local file systems are important

* Desktop and laptop: Windows, Mac, Linux
* Data center / Cloud: Google FS, Hadoop DFS
 Mobile devices: Andriod, iPhone

Why study is useful
* Study drives system designs
* Answer important questions quantitatively
* Valuable for different communities
* File system developers
* System researchers
* Tool builders

Key Questions

Ql: What do patches do?
Q2: What do bugs look like ?

Q3: Do bugs diminish over time?

Q4: What consequences do bugs have ?

Q5: Where does complexity lie ?

Q6: Do bugs occur on hormal paths or

failure paths?

Q7: What performance techniques are

used across file systems?
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A3: The total number of bugs do not diminish
over time (even for stable file systems), rather

ebbing and flowing over time.
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A6: 38% of bugs are on failure paths. Common
bug examples: wrong or miss state update
(semantic); miss unlock (concurrency); resource
leak, null dereference (memory).
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How We Studied ?

File systems are evolving over time
* Code base is not static
* New features, bug-fixing, performance, reliability

Patches describe such evolution
* How one version transforms to the next
 Every patch is available

* “System software archeology” is possible

Study with other rich information
* Source code, design documents
* Forum, mailing list
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A l: 45% of patches are maintenance patches;
35% of patches are bug fixings. Even stable file
systems, such as Ext3, have a large percentage
of bug patches.
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A4: Corruption and crash are most common,
(about 40% and 20%). Wrong behavior accounts
for only 5% to 10%, while it is dominant in user-
level applications.
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A7: A wide variety of performance techniques are
used across file systems. Performance likely justifies
the use of more complicated and time saving
synchronization methods.

What We Did ?

Our method: manual inspection
* XFS, Ext4, Btrfs, Ext3, Reiserfs and JFS

* All Linux 2.6 major versions

e 5079 patches, multiple passes

Quantitatively analyze file systems
* Patch types, bug patterns, bug consequences

* Performance improvement

* Reliability enhancement

Provide an annotated dataset
* Rich data for further analysis
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A2: Semantic bugs dominate other types (about
55% of total bugs). Concurrency bugs account
for about 20% (higher than user-level software,
which has about 3% of concurrency bugs)
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A5: Metadata management has high bug
density (e.g., inode and super block). Tree
structures are not particularly error-prone.

Conclusions

A large-scale study is feasible
* Time consuming, but manageable
* Similar study for other OS components

Research should match reality
* New tools are required for semantic bugs
* More attention for failure paths

History repeats itself
* Same mistakes, same performance improvement

Dataset is available
* http://research.cs.wisc.edu/adsl/Traces/fs-patch/
* More data in our paper and dataset
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