
Physical Disentanglement in a 
Container-Based File System

Lanyue Lu, Yupu Zhang, Thanh Do, Samer AI-Kiswany
Andrea C. Arpaci-Dusseau,  Remzi H. Arpaci-Dusseau

Motivation Evaluation

File systems lack isolation
Various techniques (virtual machines, Linux 
containers, BSD jail, Solaris Zones) are based on 
namespace isolation.
However, namespace isolation is not enough.

Global failures
Read-only and crash are common in file systems.
A fault in shared structures affect multiple 
unrelated files, directories and even namespaces.

Slow recovery
File system checkers scan the whole file system 
regardless of the faulty range. 
Current file system checkers are not scalable.

Bundled performance
Modern file systems use a shared transaction for 
updates from different files.
The performance and consistency of independent 
applications is bundled. 

Virtual Machines
Many VMs run on a shared hypervisor file system.
If a fault in one of VM’s disk image makes the file 
system read-only, then all VMs will be affected. 

IceFS 

SB Sn

cube inode number, cube pathname
orphan inode list, cube attributes

cube 0

S0 S1 S2 bg bg bg bg bg

cube 1 cube 2

c1 b

d

c2

/
a

Cube 1
Cube 2

App 3 App 1

on-disk 
journal

App 2 App 3

in-memory tx preallocated tx committed tx

App 1 App 2

on-disk
journal

(a) Ext3/Ext4 (b) IceFS

0

200

400

600

800

1000

Fs
ck

 T
im

e 
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007

35 64 91 122

Ext3 IceFS

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

OR OR NJ OR

76.1

120.6

220.3

125.4

Ext3
OR OR OR NJ

1.9 9.8 5.6

103.4

IceFS

SQLite Varmail

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Th
ro

ug
hp

ut
 (I

O
PS

)

IceFS-Offline

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Time (Second)

IceFS-Online

fsck: 35s
+

bootup: 67s

fsck: 74s
+

bootup: 39s

VM1 VM2 VM3

0

200

400

600

800

1000

Fs
ck

 T
im

e 
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007Ext3

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

Alone

20
1.9

Together

SQLite Varmail

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000

20

40

60

80

100

Time (Second)

Th
ro

ug
hp

ut
 (I

O
PS

)

fsck: 496s + bootup: 68s

VM1 VM2 VM3

0 3 6 9 12 150

100

200

Linux 3.X Versions

Fa
ilu

re
 In

st
an

ce
s

Ext3

0 3 6 9 12 150

100

200

300

400

Linux 3.X Versions

Fa
ilu

re
 In

st
an

ce
s

Ext4

0 3 6 9 12 150

200

400

600

800

Linux 3.X Versions

Fa
ilu

re
 In

st
an

ce
s

Btrfs

Read-Only Crash

The Cube abstraction
A group of files are both logically and physically 
isolated in the file system. Each cube is independent
at the file system level. 
Interface: create a cube, set attributes, add files, 
delete files, remove a cube. 

Disentangled data structures
Key data structures within modern file systems 
must be disentangled to support cube abstraction.
Three principles of disentangled data structures:

➡Physical resource isolation
Cubes must not share physical resources, such as 
shared metadata, disk blocks and memory buffers.

➡Access independence
Each cube does not contain references to other
cubes. Directory indirection is use to provide 
independent access for cubes. 

➡Transaction splitting
Each cube maintains its own separate transactions.
Different cubes commit to the journal in parallel 
with journal space reservation. 

Benefits of disentanglement
Three major benefits of a disentangled file system: 

➡Localized reactions to failures
The failure of a cube can be detected and handled 
locally.  A faulty cube can be marked as readonly or
crashed without affecting other healthy cubes.
➡Localized recovery
A cube can be viewed as a basic checking unit 
instead of the whole file system. Both offline and 
online checking are feasible now in IceFS. 
➡Specialized journaling
Parallelized journaling framework in IceFS enables 
isolated performance for cubes. Each cube also can 
have customized journaling modes for flexibility of 
consistency and performance tradeoffs.  

Overall performance
IceFS is implemented in Linux 3.5, based on Ext3 
and JBD. The total lines of code is about 7800 
(6200 in Ext3/JBD, 960 in VFS and 700 in e2fsprogs)

For both micro (sequential read/write) and macro
(Fileserver, Varmail, Webaserver) benchmarks, IceFS 
incurs little overhead compared with Ext3. 

Fast recovery
IceFS only performs checking on the faulted cube.
For different file system sizes, this figure shows the 
file system recovery time (fsck) of Ext3 and IceFS 
for one faulty cube (total 20 cubes).

Specialized journaling
We show that a disentangled journal enables high 
performance for competing applications and 
different consistency modes in a shared file system.
Both SQLite and Varmail run simultaneously on both
Ext3 and IceFS, with a SSD as the storage device.

Virtual machines
We demonstrate that IceFS can isolate file system
failures in a virtualized environment and improve 
the availability of the system significantly by reducing
the system recovery time. Different behaviors of 
both offline and online recovery are also shown. 


