

System as a Simulation

Jun He^{\$}, Duy Nguyen[#], Andrea C. Arpaci-Dusseau^{\$}, Remzi H. Arpaci-Dusseau^{\$}

^{\$}Department of Computer Sciences *Department of Statistics University of Wisconsin - Madison

What's a Good Pizza?

How to Produce Good Pizza?

We can build a pizza simulator.

What's a Good File System?

We can build a file system simulator?

We want to help:

- File system designers
 - diagnose design weakness
 - -find best policy/configuration
- File system users
- match their workload with file system
- use file system efficiently

We focus on block allocation in this study.

Layout index is a metric that is able to differentiate the following cases

We want to find out how much the following factors affect layout index

- directory span
- disk size
- disk used
- file size
- fullness

linear model?

- sparse/overwrite
- number of files
- number of chunks
- write order
- fsync style
- sync style

It is not linear

Experimental design helps avoid confounding factors

We use a nested experimental design

runs	number of chunks	fsync sync order	shared factors
n	1	OA(n,2 ¹ 2 ⁰ (1!) ¹)	Latin Hypercube Design
n	2	OA(n,2 ² 2 ¹ (2!) ¹)	
า	3	OA(n,2 ³ 2 ² (1!) ¹)	
n	4	OA(n,2 ¹ 2 ⁰ (1!) ¹)	

We conduct sensitivity analysis

Our analysis can reveal effects of interactions

ANOVA-base Sensitivity

We built a realistic and fast test framework

Results

Conclusions

the most sensivive. Btrfs is sensitive. Our "System as a Simulation" approach problems diagnose and guide system/application design.

Acknowledgements

We would like to thank PRObE project for providing the testbeds. We would like to thank Peter Qian from Department of Statistics for his help.