Fast, Accurate Simulation for SDN Prototyping

Mukta Gupta
University of Wisconsin

Joel Sommers
Colgate University

Paul Barford
University of Wisconsin

Motivation
- Prototyping, evaluating and debugging SDN is hard because:
 - Increasing scale, diversity, and complexity of apps
 - Will my SDN app behave as expected when deployed in the wild?
 - Does it operate correctly and efficiently at scale?

Objectives
- Develop an SDN simulation capability that complements existing development and debugging tools
 - A controller API environment to facilitate transition to live environments
 - Ability to generate realistic application traffic flows
 - Capability to scale up to large networks
 - Facilities for detailed debugging and tracing

Design
- Integrate POX controller and library code via monkeypatching
 - Key aspects: calls that get or set external state (time, network) and packet/flowlet translation
- Upshot: POX controller modules can be used without modification in fs
 - Discovery, spanning tree, l2 learning, hub, l2 pairs, etc., all work out of the box

Results: Accuracy

UDP CBR traffic

<table>
<thead>
<tr>
<th>Load</th>
<th>Tiny</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>6</td>
<td>8</td>
<td>33</td>
<td>72</td>
</tr>
<tr>
<td>High</td>
<td>4</td>
<td>8</td>
<td>31</td>
<td>76</td>
</tr>
</tbody>
</table>

Harpoon traffic (Pareto distr. flow sizes)

<table>
<thead>
<tr>
<th>Load</th>
<th>Tiny</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>16</td>
<td>33</td>
<td>104</td>
<td>193</td>
</tr>
<tr>
<td>High</td>
<td>30</td>
<td>62</td>
<td>194</td>
<td>337</td>
</tr>
</tbody>
</table>

Results: Speedup

Timeline

- “Fast, Accurate Simulation for SDN Prototyping”, In HotSDN workshop of SIGCOMM ’13
- Complete packet/flowlet translations to truly make the environment seamless
- Better tracing and debugging capabilities
- Improve scalability through parallelizing fs
- Is it possible to bridge other (including non-Python) controller platforms?

Evaluation
- Evaluate accuracy and scalability of fs-sdn
- Set up congruent experiments in fs-sdn and Mininet
 - Background traffic: CBR stream or Harpoon flows at two different loads each
 - Linear topologies in 4 configurations of increasing size (up to 100 switches)
 - Simple layer-3 shortest paths controller module

Results
- Plots above show byte counts per second collected in fs-sdn and an equivalent setup in Mininet
- As topology and/or traffic increase, measurements collected in Mininet degrade
- Tables above show fs-sdn execution times for scenarios with 900 simulated seconds
 - Mininet takes 900 seconds for each experiment
 - pypy interpreter with JIT compiler was used for experiments