
Tetris: Multi-Resource Packing

for Cluster Schedulers
Robert Grandl*, Ganesh Ananthanarayanan†, Srikanth Kandula†,

Sriram Rao†, Aditya Akella*

*University of Wisconsin, †Microsoft Research

Diverse Resource Requirements

Motivation

Tasks in modern data parallel clusters have highly diverse

resource requirements along CPU, memory, disk and network

 Memory [100 MB to 17 GB], CPU [2% of a core to 6 cores]

Any of these resources may become bottlenecked

 Demand for different resources are not correlated

Correlation matrix of task resource demands for Bing(left) and Facebook(right).

Tightness of resources. Probability that a type of resource is used

at above a certain fraction of its capacity in the Facebook cluster.

Current Schedulers Do Not Pack

Today’s schedulers allocate resources to tasks in units of slots, each

slot corresponding to some amount of memory or cores. Slots based

allocation leads to several problems.

Given such diversity, we seek to build a cluster scheduler that packs tasks to machines based on their requirements of multiple

resources so as to increase cluster efficiency. Our objective in packing is not only to maximize the task throughput but also to

speed up job completions. While fair allocations do not improves cluster efficiency, a practical solution should enable it.

Tetris
Multi-dimensional bin-packing problem
 APX-hard for more than two dimensions

 Several heuristics proposed but they do not apply

 size of the ball, contiguity of allocation,

 resource demands are elastic in time

Competing objectives in practice
Cluster utilization vs. Job completion times vs. Fairness

Improves Cluster Efficiency
Pack tasks along multiple resources

Improves Job Completion Time
Multi-resource version of SRTF

Incorporate Fairness

Cosine similarity between task demand vector and

machine resource vector

Favor jobs with small remaining duration and small

resource consumption

Fairness knob (0, 1]

 f → 0 close to perfect fairness

 f = 1 most efficient scheduling

S
c

o
re

 A

1: while (resources R are free)

2: among FJ jobs furthest from fair share

3: score (j) =

4: max task t in j, demand(t) ≤ R A(t, R) + T(j)

5: pick j*, t* = argmax score(j)

6: R = R – demand(t*)

7: end while

Learning Task Requirements
 From tasks that have finished in the same phase

 Coefficient of variation [0.022, 0.41]

 Collecting statistics from recurring jobs

Evaluation

Prototype atop Hadoop Yarn 2.3

Large scale evaluation
 Cluster capacity: 250 nodes

 4 hour synthetic workload

Trace-driven simulation
 Facebook production traces analysis

 Utilization of different resources peaks at different times

Fragmentation Over-allocation

Current Schedulers Packer Scheduler Current Schedulers Packer Scheduler

Slots allocated purely on fairness considerations

(simplified) Scheduling procedure

S
c
o

re
 T

S

c
o

re
 F

Fairness Knob - DRF

S
lo

w
d

o
w

n
 (

%
)

Speeds up jobs by 40% and 35%(Fair, CS)

Reduces makespan by 41% and 29%(Fair, DRF)

Fairness knob: fewer than 6% of jobs slow down

R
e
d

u
c

ti
o

n
 (

%
)

in
 m

a
k

e
s

p
a

n

R
e
d

u
c

ti
o

n
 (

%
)

in

A
v
g

.
J

o
b

 D
u

ra
ti

o
n

