
Symbolic Execution Techniques
• Symbolic execution based on KLEE

• Allows memory locations to be
treated as a system of constraints

• SAT solver explores all feasible
program paths

• Most symbolic execution engines
maintain the frontier of explored
memory states

• FiE maintains entire tree of program
states

Future Work
• Wider variety of analysis targets

• Embedded Operating Systems
• Wider variety of chipsets

• Push heavyweight symbolic execution
back to desktop applications

Fie on Firmware!
Finding Vulnerabilities in Embedded Systems using Symbolic Execution

Problem
• Embedded devices ubiquitous, and

security critical
• Highly diverse architectures and

varied deployments
• Many memory vulnerabilities

reported in the wild

Basic Approach
• Heavyweight program analysis for

lightweight firmware
• Modular design:

• Pluggable architecture model
• Pluggable interrupt model

• Verification in many cases

Key Payoffs
• Flexible analysis fidelity levels

• Bugfinding for larger firmwares
• Verification for smaller firmwares

• Can handle many different deployments
• Handles over 150 MSP430 models

Modular Memory Library
• Specify single file that lays out memory

ranges and offets
• Special memory semantics:

• RAM – standard semantics
• Flash – must be unlocked to write
• Peripheral – user-defined semantics

• Supports diverse analysis
• Symbolic execution
• Fuzzing

Modular Interrupt Library
• Specify frequency of interrupts

• Timers
• Peripheral events

• Most execution time is spent in interrupts

Optimizations
• Pruning

• Maintain previously seen states
• Discard paths with identical state

• Smudging
• Replace volatile concrete states with

symbolic over-approximation

Learn More
• Fie Presentation:

 http://bit.ly/1lHzE0V

• Download FiE:

 http://bit.ly/1n5W9Pg

X ≠ 0

X < 0

error

X > 0

Evaluation
• Corpus of 99 MSP430 firmwares

• 12 TI community
• 1 Synthetic
• 8 USB protocol stack
• 78 Github

• Ran tests for 50 minutes on Amazon EC2
• 16-bit KLEE
• FiE (+pruning) (+smudging)

Results

FiE Workflow

firmware
source code

firmware
bytecode

Symbolic
Execution Engine

interrupt
library

memory
library

Clang
Wrapper

intrinsic
bytecode

Error trace Verification

Conclusions
• Static analysis is a good fit for

embedded environments
• Traditionally out-of-reach analysis

goals often achievable

Mode Termination Status FPs

No
mem

Timeout Finished

Base 9 2 88 93

Fuzz 10 79 10 0

Plain 7 85 7 0

Prune 0 64 35 0

Smudge 0 46 53 1

Coverage Results: Percentage of firmware
covered by FiE, sorted by number of
executable instructions (NEXI). These results
show that pruning and smudging are both
effective optimizations, with Smudging being
the most effective

Bugfinding / Validiation: This table shows the
effectiveness of FiE over Base (unmodified
version of KLEE), Fuzz (Fuzz testing memory
model), Plain (FiE with no optimizations),
Prune (FiE with pruning only), and Smudge (FiE
with both pruinging and smudging. FiE is a
marked improvement over KLEE, and has a low
False Positive (FP) rate.

Relaxed Interrupt Model: Most analysis time is
spent in interrupts. Here, the coverage is
shown for the 13 most challenging firmwares
(in terms of exhaustive program coveage).
Relaxing the interrupts to fire once per basic
block can have dramatic coverage gains

Drew Davidson, Benjamin Moench, Somesh Jha, Thomas Ristenpart

