THE UNIVERSITY

WISCONSIN

MaAabisOn

Predicting Power Usage of Android Applications

Ben Bramble and Professor Michael M. Swift

(Problem: Mobile devices have limited battery life and charging)
opportunities are not always s available. The increasing complexity
(Bluetooth, GPS, WIFI, multicore processors...) of these devices require
a more inclusive approach to power modeling.

Solution: Using a software only approach, determine the impact of
mobile device subcomponents, measure the performance of
application, and combine heuristics with the measurements to predict
future application impacts.

End Result: an educated user capable of extending the life of their

device through informed decisions. y
Step 1: Profiling

Conduct Baseline Test of
Device Components

= CPU by Core/Frequency
= Display On/Off

= Wifi Bytes Received

= |/O Reads/Writes

mAh drain per MB

mAh drain per 1000 CPU Cycles

mAh drain per 10 seconds

Power by Component

WIFI:RX
10:Write
10:Read
1512MHz
1242MHz
702MHz
384MHz

Display /

0.00 0.20 0.40

mAh

0.60 0.80

Step 2: App Polling

Determine Heuristics of Running Processes Over

Time

= Modified Linux kernel to include counters per
processes for CPU statistics by frequency and
network bytes received

Step 3: Projection

Apply Process Heuristics to Sub-Component

Expressions to Determine:

= Projected Battery Drain per Minute of Using
Specific Application

= |dentify Power Inefficient Applications

= Create background service to poll every 30 - - -
h . li . Time |Display|] CPU Wifi | Total
seconds to gather data on running applications Active | cost | cost liocostl cost I cost
= Maintain database containing all process Name () (%*) | (%*) | (%*) | (%*) § (%*)
information System Services | 3786:05 | 0.000 [0.126 | 0.001 | 0.142 § 0.268
Name Angry Birds | Power Pro | Browser Angry Birds 2168.274| 4.598 | 3.712 | 0.039 | 0.058 [8.407
Foreground
WIFI (MB)ry 0.29 0 2.04 :
Angry Birds 1617.776| 0.000 | 0.465 | 0.001 | 0.000 fJ 0.465
Read 0 0 0.403 Background
10 (MB) B
\Write 0.45 2.01 10.05 RS 2199.242| 0.000 | 0.041 | 0.056 | 0.032 f 0.129
Background
384MHz 360 12 800
Browser 1586.808 | 3.365 | 0.128 | 0.085 | 0.014 [3.592
CPU [702MHz 5 0 4016 Foreground
(cycles) 1249MHz 6912 212 8201 Power Profiler | 3786:05 | 0.000 | 0.058 | 0.078 | 0.000 Jf 0.136
—_—
1512MHz 36012 800 1001 Sum (%*) 7.963 | 4.529 | 0.259 | 0.246 j§12.998
Display |Foreground
(s) i 2000 0 1509 * % Percent of total Battery Drained

Future Work

= Extensions
o Add components such as GPS, 3G, audio, and Ul
o Explore models without custom kernel or super
user
= Applications
o Allow user to dictate policy based off results i.e.
contain power usage by application
o Create visualizations to easily explain where
the power is drained such as pie charts and
graphs

Related Work

= Tools and Applications

o Power Tutor: Power model for select Android
phones based off lab component testing

o Carat: Cloud-based collaborative effort to
identify application power hogs

o AppScope: Monitors kernel activities for
hardware component requests and charges the
appropriate application

o Watts On: Windows 8 developer tool based off
lab component testing

